ﻤﺠﻠﺔ ﺠﺎﻤﻌﺔ ﺩﻤﺸﻕ ﻟﻠﻌﻠﻭﻡ ﺍﻷﺴﺎﺴﻴﺔ ـ ﺍﻟﻤﺠﻠﺩ ) (١٦ـ ﺍﻟﻌﺩﺩ ﺍﻷﻭل ـ ٢٠٠٠ ﻤﻨﻅﻡ ﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﺍﻟﻌﺎﺯﻟﺔ ﻭﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل ،ﻭﺫﺍﺕ ﺍﻟﺭﺘﺒﺔ ﺍﻟﻔﺭﺩﻴﺔ ﻓﻲ ﺍﻟﺯﻤﺭﺓ ) ،GL(q,pﺤﻴﺙ pﻭ qﻋﺩﺩﺍﻥ ﺃﻭﻟﻴﺎﻥ ﺩ .ﺍﺴﻜﻨﺩﺭ ﻋﻠﻲ ﻭ ﺴﻠﻭﻯ ﻴﻌﻘﻭﺏ ﻗﺴﻡ ﺍﻟﺭﻴﺎﻀﻴﺎﺕ ـ ﻜﻠﻴﺔ ﺍﻟﻌﻠﻭﻡ ـ ﺠﺎﻤﻌﺔ ﺘﺸﺭﻴﻥ ـ ﺍﻟﻼﺫﻗﻴﺔ ـ ﺍﻟﺠﻤﻬﻭﺭﻴﺔ ﺍﻟﻌﺭﺒﻴﺔ ﺍﻟﺴﻭﺭﻴﺔ ﺘﺎﺭﻴـﺦ ﺍﻹﻴﺩﺍﻉ ١٩٩٨/٠٢/٢٠ ﻗﺒل ﻟﻠﻨﺸـﺭ ﻓﻲ ١٩٩٩/٠٥/٢٥ ﺍﻟﻤﻠﺨﺹ ﺴﻭﻑ ﻨﺴﺘﻌﺭﺽ ﻓﻲ ﻫﺫﻩ ﺍﻟﺩﺭﺍﺴﺔ ﻤﺴﺄﻟﺔ ﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﺍﻟﻌﺎﺯﻟﺔ ﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل ﻓﻲ ) GL(q,pﺤﻴـﺙ q,p ﻋﺩﺩﺍﻥ ﺃﻭﻟﻴﺎﻥ ،q|(p-١) ،ﻭﺍﻟﺘﻲ ﺘﻤﻠﻙ ﺭﺘﺒﺔ ﻤﺎ ،rﺤﻴﺙ ) ، r /| ( P − 1ﻤﻥ ﺤﻴﺙ ﺩﺭﺍﺴﺔ ﺯﻤﺭﻫـﺎ ﺍﻟﺠﺯﺌﻴـﺔ ﺍﻟﻨﻅﺎﻤﻴﺔ ﻭﺘﺤﺩﻴﺩ ﺭﺘﺒﺔ ﺍﻟﻤﻨﻅﻡ ﻟﻜ ﱟل ﻤﻨﻬﺎ ﻓﻲ ﺍﻟﺤﺎﻟﺔ ﺍﻟﺘﻲ ﻴﻜﻭﻥ ﻓﻴﻬﺎ rﻋﺩﺩﹰﺍ ﻓﺭﺩﻴﺎﹰ ،ﻭﻜﺫﻟﻙ ﺩﺭﺍﺴـﺔ ﻤﺴـﺄﻟﺔ ﺘﺭﺍﻓﻘﻬﺎ ﻓﻲ ﺍﻟﺯﻤﺭﺓ ).GL(q,p ﺍﻟﻜﻠﻤﺎﺕ ﺍﻟﻤﻔﺘﺎﺡ :ﺯﻤﺭﺓ ـ ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ـ ﻤﻨﻅﻡ ـ ﺯﻤﺭﺓ ﻗﺎﺒﻠﺔ ﻟﻠﺤل. ١٠١ … ﻴﻌﻘﻭﺏ ﻭ ﻋﻠﻲ ـ ﺩﺭﺍﺴﺔ ﻤﻨﻅﻡ ﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﺍﻟﻌﺎﺯﻟﺔ ﻭﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل ﻭﺫﺍﺕ ﺍﻟﺘﺭﺒﺔ ﺍﻟﻔﺭﺩﻴﺔ ﻓﻲ ﺍﻟﺯﻤﺭﺓ Normalijor of Isolating Soluable Subgroups of Odd Order in the Qroup GL(q, p), Where p, q are prime sumfers Salwa YAAQOOP , Dr Eskandar ALI Mathematics Department-Faculty of Science-Tishreen University-Lattaquia-Syria Received ٢٠/٠٢/١٩٩٨ Accepted ٢٥/٠٥/١٩٩٩ ABSTRACT This study represents the problem of the invariant sub-groups of the maximal solvable invariant sub-groups in a group GL(q,p), with p and q are primes, q|(p-١), and its order is r with r /| ( P − 1) , as the studying of its normalizer groups and identification the order of the normalizer for each one in the case r is an odd order, and also with studying the problem of its conjunction in a group GL(q,p). Key Words: Group, Subgroup, Normalizor, Solvable Group. ١٠٢ ﻤﺠﻠﺔ ﺠﺎﻤﻌﺔ ﺩﻤﺸﻕ ﻟﻠﻌﻠﻭﻡ ﺍﻷﺴﺎﺴﻴﺔ ـ ﺍﻟﻤﺠﻠﺩ ) (١٦ـ ﺍﻟﻌﺩﺩ ﺍﻷﻭل ـ ٢٠٠٠ ﺘﻌﺎﺭﻴﻑ ﻭﻤﺼﻁﻠﺤﺎﺕ: - ⎞⎛n ﻨﺩﻋﻭ ﺍﻟﺤﻘل ⎟ GF ⎜ pﺤﻴﺙ pﻋﺩﺩ ﺃﻭﻟﻲ ﻭ nﻋﺩﺩ ﻁﺒﻴﻌـﻲ ،ﺒﺤﻘـل ﻏـﺎﻟﻭﺍ ﻤـﻥ ⎠ ⎝ n - ﺍﻟﺭﺘﺒﺔ . p ﺍﻟﺯﻤﺭﺓ ) GL(Vﻫﻲ ﺯﻤﺭﺓ ﻤﺼﻔﻭﻓﺎﺕ ﺠﻤﻴﻊ ﺍﻟﻤﺅﺜﺭﺍﺕ ﺍﻟﺨﻁﻴﺔ ﺍﻟﻤﺘﺒﺎﻴﻨﺔ ﻋﻠﻰ ﺍﻟﻔﻀﺎﺀ .V - ﻨﺴﻤﻲ ﺍﻟﺯﻤﺭﺓ Hﺍﻟﺠﺯﺌﻴﺔ ﻤﻥ ﺍﻟﺯﻤﺭﺓ ) ،GL(Vﺯﻤﺭﺓ ﻨﺎﻗﻠﺔ ﻋﻠﻰ ﺍﻟﻔﻀﺎﺀ Vﺇﺫﺍ ﻭﺠـﺩ ﻓﻲ ﺍﻟﻔﻀﺎﺀ Vﻓﻀﺎﺀ ﺠﺯﺌﻲ ﻭﺍﺤﺩ ﻋﻠﻰ ﺍﻷﻗـل ﻤﺜـل ،V١ﺒﺤﻴـﺙ )ﺍﻟﻔﻀﺎﺀ ﺍﻟﺼﻔﺭﻱ( ﻭﻜﺎﻥ: {0} ≠ V1 ≠ V h (V1 ) = V1 ; ∀h ∈ H ﺃﻤﺎ ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺯﻤﺭﺓ ﺍﻟﺠﺯﺌﻴﺔ Hﻻ ﺘﻨﻘل ﻤﻥ ﺍﻟﻔﻀﺎﺀﺍﺕ ﺍﻟﺠﺯﺌﻴﺔ ﻓﻲ ﺍﻟﻔﻀﺎﺀ Vﺴـﻭﻯ ﺍﻟﻔﻀﺎﺌﻴﻥ ﺍﻟﺠﺯﺌﻴﻴﻥ Vﻭ } {0ﻋﻨﺩﺌﺫ ﻨﺩﻋﻭﻫﺎ ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻋﺎﺯﻟﺔ ﻓﻲ ﺍﻟﺯﻤﺭﺓ ) GL(Vﻋﻠﻰ ﺍﻟﻔﻀﺎﺀ .V - ﻨﻘﻭل ﻋﻥ ﺍﻟﺯﻤﺭﺓ ﺍﻟﺠﺯﺌﻴﺔ GL(V)⊃Hﺇﻨﹼﻬﺎ ﺯﻤﺭﺓ ﻏﻴﺭ ﺃﺼﻠﻴﺔ ،ﺇﺫﺍ ﻜﺎﻥ ﺍﻟﻔﻀـﺎﺀ V ⊕ ﻴﻜﺘﺏ ﻋﻠﻰ ﺸﻜل ﻤﺠﻤﻭﻉ ﻤﺒﺎﺸﺭ V = ∑ Qv ; v ∈ Iﻟﻔﻀﺎﺀﺍﺕ ﺠﺯﺌﻴﺔ ، {0} ≠ Qv ﻭﻜﺎﻥ ) Card I>١ﺤﻴﺙ Iﻤﺠﻤﻭﻋﺔ ﺠﺯﺌﻴﺔ ﻤﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻁﺒﻴﻌﻴﺔ( ،ﻭﻜﺎﻥ ﻤﻥ ﻥ g (Qα ) ⊆ Qβﺤﻴﺙ . I ∋ β ﺃﺠل ﺃﻱ I ∋ αو H ∋ gﺃ ﺃﻤﺎ ﺇﺫﺍ ﻜﺎﻨﺕ Hﻻ ﺘﺤﻘﻕ ﺍﻟﺸﺭﻭﻁ ﺍﻟﺴﺎﺒﻘﺔ ﻓﻨﺩﻋﻭﻫﺎ ﺯﻤﺭﺓ ﺃﺼﻠﻴﺔ. - ﻨﺩﻋﻭ ﺍﻟﺯﻤﺭﺓ Hﺯﻤﺭﺓ ﻗﺎﺒﻠﺔ ﻟﻠﺤل ﺇﺫﺍ ﻭﺠﺩﺕ ﻓﻴﻬﺎ ﺴﻠﺴﻠﺔ ﻤـﻥ ﺍﻟﺯﻤـﺭ ﺍﻟﺠﺯﺌﻴـﺔ Hi ﺒﺤﻴﺙ: =H {1} = H 0 ⊆ H 1 ⊆ ... ⊆ H r ﺤﻴﺙ H i +1 ∆H iﺘﻌﺭﻴﻑ ﺍﻟﺯﻤﺭﺓ ﺍﻟﻨﻅﺎﻤﻴﺔ )ﺃﻱ ﺍﻟﺯﻤﺭﺓ H iﻨﻅﺎﻤﻴﺔ ﻓﻲ ﺍﻟﺯﻤـﺭﺓ ،( H i +1 H ﻭﺍﻟﺯﻤﺭﺓ ﺍﻟﻌﺎﻤﻠﺔ i +1ﺠﻤﻴﻌﻬﺎ ﺘﺒﺩﻴﻠﻴﺔ. Hi ١٠٣ ﻴﻌﻘﻭﺏ ﻭ ﻋﻠﻲ ـ ﺩﺭﺍﺴﺔ ﻤﻨﻅﻡ ﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﺍﻟﻌﺎﺯﻟﺔ ﻭﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل ﻭﺫﺍﺕ ﺍﻟﺘﺭﺒﺔ ﺍﻟﻔﺭﺩﻴﺔ ﻓﻲ ﺍﻟﺯﻤﺭﺓ … - ﻼ ﺯﻤﺭﻴﹰﺎ ﻋﻨﺩﺌﺫ ﺴـﻨﺭﻤﺯ ﺒــﹻ Ψ H : H → K ﺒﻔﺭﺽ Ψ : G1 → G2ﺘﺸﺎﻜ ﹰ ﻟﻤﻘﺼﻭﺭ Ψﻋﻠﻰ ،Hﺤﻴﺙ Hﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻤﻥ ﺍﻟﺯﻤﺭﺓ G١ﻭ Kﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻤـﻥ ﺍﻟﺯﻤﺭﺓ .G٢ - ﺴﻨﺭﻤﺯ ﺒـﹻ H 1 , H 2ﻟﻠﺯﻤﺭﺓ ﺍﻟﻤﻭﻟﹼﺩﺓ ﻤﻥ ﺍﻟﺯﻤﺭﺘﻴﻥ ﺍﻟﺠـﺯﺌﻴﺘﻴﻥ H١ﻭ H٢ﻤـﻥ ﺯﻤﺭﺓ ﻤﺎ ،Gﻜﻤﺎ ﺴﻨﺭﻤﺯ ﺒـﹻ aﻟﻠﺯﻤﺭﺓ ﺍﻟﺩﻭﺭﻴﺔ ﺍﻟﻤﻭﻟﹼﺩﺓ ﺒﻌﻨﺼﺭ ﻭﺍﺤـﺩ aﻤـﻥ ﺍﻟﺯﻤﺭﺓ .G - ﻨﺩﻋﻭ Sxﺒﺯﻤﺭﺓ ﺍﻟﺘﺒﺎﺩﻴل ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﻤﻭﻋﺔ .x ﺍﻟﺯﻤﺭﺓ ) GL(q,pﻫﻲ ﺯﻤﺭﺓ ﺠﻤﻴﻊ ﺍﻟﻤﺼﻔﻭﻓﺎﺕ ﺍﻟﻤﺭﺒﻌﺔ ﺍﻟﻘﻠﻭﺒـﺔ )ﺍﻟﻤﻨﺘﻅﻤـﺔ( ﻤـﻥ ﺍﻟﻤﺭﺘﺒﺔ ،qﻭﺍﻟﻤﺄﺨﻭﺫﺓ ﻋﻨﺎﺼﺭﻫﺎ ﻤﻥ ﺍﻟﺤﻘل ) ،GF(Pﺤﻴﺙ pﻭ qﻋﺩﺩﺍﻥ ﺃﻭﻟﻴـﺎﻥ ،ﻭ Iqﻤﺼﻔﻭﻓﺔ ﺍﻟﻭﺍﺤﺩﺓ ﻓﻲ ﻫﺫﻩ ﺍﻟﺯﻤﺭﺓ. - ﺍﻟﺯﻤﺭﺓ ﺍﻟﺠﺯﺌﻴﺔ ) SL(q,pﻭﻫﻲ ﺯﻤﺭﺓ ﺠﻤﻴﻊ ﺍﻟﻤﺼﻔﻭﻓﺎﺕ ﻤﻥ ﺍﻟﺯﻤﺭﺓ ) GL(q,pﻭﺍﻟﺘﻲ - ﻨﺴﻤﻲ ﺍﻟﺯﻤﺭﺓ ﺍﻟﺠﺯﺌﻴـﺔ } N ( A) = {g ∈ GL(q, p ); gA = Agﺯﻤـﺭﺓ ﺍﻟﻤـﻨﻅﻡ ل ﻤﻨﻬﺎ ﻴﺴﺎﻭﻱ ﺍﻟﻭﺍﺤﺩ. ﻤﻌﻴﻥ ﻜ ﱟ ﻟﻠﺯﻤﺭﺓ ﺍﻟﺠﺯﺌﻴﺔ Aﻓﻲ ﺍﻟﺯﻤﺭﺓ ) ،GL(q,pﻭﻫﻲ ﺃﻜﺒﺭ ﺯﻤﺭﺓ ﺠﺯﺌﻴـﺔ ﻓـﻲ ﺍﻟﺯﻤـﺭﺓ ) GL(q,pﺘﻜﻭﻥ Aﻨﻅﺎﻤﻴﺔ ﻓﻴﻬﺎ. - ﻨﺩﻋﻭ ﺍﻟﻌﻨﺼﺭ (a, b ) = aba −1b −1ﻤﺒﺎﺩل ﺍﻟﻌﻨﺼﺭﻴﻥ aﻭ bﻤﻥ ﺍﻟﺯﻤﺭﺓ .A - ﻟﺘﻜﻥ Aﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻤﺎ ،ﻨﺩﻋﻭ ﺍﻟﺯﻤـﺭﺓ ﺍﻟﺠﺯﺌﻴـﺔ A′ = aba −1b −1 ; a, b ∈ A } { ﺍﻟﻤﻭﻟﺩﺓ ﺒﻜل ﺍﻟﻤﺒﺎﺩﻻﺕ ﻓﻲ Aﺒﺎﻟﺯﻤﺭﺓ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺯﻤﺭﺓ Aﺃﻭ ﺍﻟﺯﻤﺭﺓ ﺍﻟﺠﺯﺌﻴﺔ ﻟﻠﻤﺒﺎﺩﻻﺕ ﻓﻲ .A ﺍﻟﻤﺒﺭﻫﻨﺎﺕ: ﻥ ﺍﻟﺯﻤﺭﺓ ﺍﻟﺠﺯﺌﻴﺔ ﺍﻷﺼﻠﻴﺔ ﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل ﻓﻲ ﺍﻟﺯﻤﺭﺓ ) GL(q,pﻫـﻲ -١ﻤﻌﻠﻭﻡ ﻤﻥ ] [١ﺃ ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻋﺎﺯﻟﺔ ﻗﺎﺒﻠﺔ ﻟﻠﺤل ﻓﻲ ﺘﻠﻙ ﺍﻟﺯﻤﺭﺓ. ١٠٤ ﻤﺠﻠﺔ ﺠﺎﻤﻌﺔ ﺩﻤﺸﻕ ﻟﻠﻌﻠﻭﻡ ﺍﻷﺴﺎﺴﻴﺔ ـ ﺍﻟﻤﺠﻠﺩ ) (١٦ـ ﺍﻟﻌﺩﺩ ﺍﻷﻭل ـ ٢٠٠٠ -١ﺒﻔﺭﺽ Gﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻋﻅﻤﻰ ﻋﺎﺯﻟﺔ ﻭﻗﺎﺒﻠﺔ ﻟﻠﺤل ﻓﻲ ) GL(q,pﺤﻴﺙ Gﺃﺼﻠﻴﺔ ﻭ pﻭ qﻋﺩﺩﺍﻥ ﺃﻭﻟﻴﺎﻥ ،ﻭﺒﺤﻴﺙ ) ،q|(p-١ﻭﻟﺘﻜﻥ Fﺯﻤﺭﺓ ﺘﺒﺩﻴﻠﻴﺔ ﻨﻅﺎﻤﻴـﺔ ﻋﻅﻤـﻰ ﻓـﻲ ﺍﻟﺯﻤﺭﺓ Gﻤﻥ ﺍﻟﺸﻜل: * ⎧ ⎫ ⎬)F = ⎨ ρI q ; ρ ∈ ∆, ∆ = GF ( P ⎩ ⎭ ﻋﻨﺩﺌ ٍﺫ ﺘﻭﺠﺩ ﻓﻲ Gﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻨﻅﺎﻤﻴﺔ Aﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ ]:[١ )A = a b F ; a q = b q = 1, (a, b) = ωI q ; ω q = 1,1 ≠ ω ∈ GF ( P ] )(١ )(٢ [ ⎤⎡ 0 1 ⎢=b , a = diag 1, ω, ω 2 ,..., ωq −1 ⎥ ⎦⎣I q −1 0 ﻟﺘﻜﻥ Hﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻤﺎ ﻋﺎﺯﻟﺔ ﻓﻲ ﺍﻟﺯﻤﺭﺓ Gﻭﺫﺍﺕ ﺭﺘﺒﺔ ﻓﺭﺩﻴﺔ rﺒﺤﻴﺙ )r /| ( P − 1 ﻋﻨﺩﺌﺫ ﻤﻥ ﺃﺠل ﺘﺤﺩﻴﺩ ﺭﺘﺒﺔ ﺍﻟﻤﻨﻅﻡ ﻟﻬﺫﻩ ﺍﻟﺯﻤﺭﺓ ﺴﻨﻭﺭﺩ ﻤﺎ ﻴﻠﻲ: ﻤﺒﺭﻫﻨﺔ: ﺇﻥ ) N(Hﺭﺘﺒﺔ ﺍﻟﻤﻨﻅﻡ ﻷﻱ ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ Hﻋﺎﺯﻟﺔ ﻏﻴﺭ ﺘﺒﺩﻴﻠﻴﺔ ﻤﻥ ﺍﻟﺯﻤﺭﺓ Gﻓـﻲ ﺍﻟﺯﻤﺭﺓ ) GL(q,pﻭﺫﺍﺕ ﺭﺘﺒﺔ ﻓﺭﺩﻴﺔ rﺤﻴﺙ ) r /| (P − 1ﺘﺤﻘﻕ ﻤﺎ ﻴﻠﻲ: N(H) = G (١ﻋﻨﺩﻤﺎ ) ، p − 1 ≡/ 0(mod 4ﺃﻤﺎ ﺇﺫﺍ ﻜـﺎﻥ ) P − 1 ≡ 0(mod 4 ﻓﻴﺠﺏ ﺃﻥ ﺘﻜﻭﻥ .A⊃H N ( H ) = 6 q 2 ( p − 1) (٢ﻓﻴﻤﺎ ﻋﺩﺍ ﺫﻟﻙ. ﺍﻟﺒﺭﻫﺎﻥ: ﻟﺘﻜﻥ Hﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻤﺎ ﻋﺎﺯﻟﺔ ﺫﺍﺕ ﺭﺘﺒﺔ ﻓﺭﺩﻴﺔ rﻤﻥ ﺍﻟﺯﻤﺭﺓ ،Gﺤﻴﺙ )، r /| (P − 1 ﻋﻨﺩﺌﺫ ﻤﻥ ﺘﻌﺭﻴﻑ ﺍﻟﻌﺎﺯﻟﻴﺔ ﻓﺈﻥ ) N(Hﺯﻤﺭﺓ ﺍﻟﻤﻨﻅﻡ ﻟــ Hﻓﻲ ) GL(q,pﺘﺸـﻜل ﺯﻤـﺭﺓ ﺠﺯﺌﻴﺔ ﻋﺎﺯﻟﺔ ﻓﻲ ) GL(q,pﻭﺃﻴﻀﹰﺎ ) N(Hﺯﻤﺭﺓ ﺠﺯﺌﻴـﺔ ﻗﺎﺒﻠـﺔ ﻟﻠﺤـل ﻓـﻲ )،GL(q,p ﺒﺎﻟﺤﻘﻴﻘﺔ ،ﺇﻨﻪ ﻤﻥ ﺍﻟﺴﻬل ﺍﻟﺘﺤﻘﻕ ﺃﻥ ) H ⊇ N ′( Hﻋﻠﻤﹰﺎ ﺃﻥ ) N ′( Hﺍﻟﺯﻤـﺭﺓ ﺍﻟﻤﺸـﺘﻘﺔ ١٠٥ ﻴﻌﻘﻭﺏ ﻭ ﻋﻠﻲ ـ ﺩﺭﺍﺴﺔ ﻤﻨﻅﻡ ﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﺍﻟﻌﺎﺯﻟﺔ ﻭﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل ﻭﺫﺍﺕ ﺍﻟﺘﺭﺒﺔ ﺍﻟﻔﺭﺩﻴﺔ ﻓﻲ ﺍﻟﺯﻤﺭﺓ … ﻟﻠﺯﻤﺭﺓ ) N(Hﻫﻲ ﺃﺼﻐﺭ ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻨﻅﺎﻤﻴﺔ ﻓﻲ ) N(Hﺯﻤﺭﺘﻬـﺎ ﺍﻟﻌﺎﻤﻠـﺔ ﺘﺒﺩﻴﻠﻴـﺔ]،[٥ )N ( H ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﺘﺒﺩﻴﻠﻴﺔ ﺫﻟﻙ ﻷﻥ: ﻭﺒﺎﻟﺘﺎﻟﻲ ﺍﻟﺯﻤﺭﺓ H x, y ∈ N (H ) ⇒ xHyH = xyH = xy ( y −1 x −1 yx )H = yxH = yHxH ﺒﻤﺎ ﺃﻥ ﻜل ﺯﻤﺭﺓ ﺘﺒﺩﻴﻠﻴﺔ ﻫﻲ ﺯﻤﺭﺓ ﻗﺎﺒﻠﺔ ﻟﻠﺤل ،ﻭﺒﻤﺎ ﺃﻥ ﺍﻟﺯﻤﺭ ﺍﻟﻤﻌﻁﻴﺔ Hﺃﻴﻀﹰﺎ ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻗﺎﺒﻠﺔ ﻟﻠﺤل ﻋﻨﺩﺌﺫ ﺒﺤﺴﺏ ﺨﻭﺍﺹ ﺍﻟﺯﻤﺭ ﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل] ،[٥ﺘﻜﻭﻥ ) N(Hﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻗﺎﺒﻠﺔ ﻟﻠﺤل ﻓﻲ ) ،GL(q,pﻭﺒﺎﻟﺘﺎﻟﻲ ﻤﻥ ﺃﻋﻅﻤﻴﺔ Gﻓﻲ ) GL(q,pﻓﺈﻥ: N(H) ⊆ G )(٣ ﺍﻵﻥ ،ﺒﺤﺴﺏ ] [٢ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﺍﻟﻌﺎﺯﻟﺔ ﺍﻵﻨﻔﺔ ﺍﻟﺫﻜﺭ ﻏﻴﺭ ﺘﺒﺩﻴﻠﻴﺔ ﻓﻲ Gﻓـﺈﻥ Hﺘﺤﻭﻱ ﺃﺼﻐﺭ ﺯﻤﺭﺓ ﻨﻅﺎﻤﻴﺔ ﻋﺎﺯﻟﺔ ﻭﻏﻴﺭ ﺘﺒﺩﻴﻠﻴﺔ Bﻓﻲ Gﻭﻟﻬﺎ ﺍﻟﺸﻜل: ; B= a b ω aω,b,ﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﻼﻗﺔ ).(٢ ﻥ: ﻭﺒﺎﻟﺘﺎﻟﻲ ﻤﻥ ﺍﻟﻭﺍﻀﺢ ﺠﺩﹰﺍ ﺃ )(٤ )A⊆N(H ﺤﻴﺙ Aﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﻼﻗﺔ ):(٢ ﺃﻴﻀﹰﺎ ﺒﺤﺴﺏ ] [٢ﺘﻭﺠﺩ ﻤﻥ ﺃﺠـل ﺃﻱ ﺠﺯﺌﻴـﺔ ﻋﻅﻤـﻰ ﻋﺎﺯﻟـﺔ ﻗﺎﺒﻠـﺔ ﻟﻠﺤـل ﻓـﻲ ) ،G L(q,pﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ Uﻋﻅﻤﻰ ﻋﺎﺯﻟﺔ ﻗﺎﺒﻠﺔ ﻟﻠﺤل ﻓﻲ ) ،SL(٢,qﺒﺤﻴﺙ ﻴﻜﻭﻥ ﺍﻟﺘﻁﺒﻴﻕ ﻼ ﺯﻤﺭﻴﹰﺎ ﻏﺎﻤﺭﹰﺍ: Ψﺍﻟﻤﻌﺭﻑ ﻜﻤﺎ ﻴﻠﻲ ،ﺘﺸﺎﻜ ﹰ ⎤ ⎡α β ⎢ Ψ : N(A) → U; x a ⎥ ⎦⎣ γ δ ﺤﻴﺙ ) α, β, δ, γ ∈ GF(qﻭﺘﺭﺘﺒﻁ ﻓﻴﻤﺎ ﺒﻴﻨﻬﺎ ﺒﺎﻟﻌﻼﻗﺎﺕ: )(٥ xax −1 = λa α bγ , xbx −1 = µα β bδ ﺤﻴﺙ ∈a , b A :ﻭ ∆ → µ ،λﻭ Aﻭ ∆ ﻤﻌﺭﻓﺎﻥ ﺒﺎﻟﻌﻼﻗﺔ ) (٢ﻭﺍﻟﻌﻼﻗﺔ ) (١ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ: ﺇﺫﹰﺍ: ≅U )N ( A )(٦ A ١٠٦ ﻤﺠﻠﺔ ﺠﺎﻤﻌﺔ ﺩﻤﺸﻕ ﻟﻠﻌﻠﻭﻡ ﺍﻷﺴﺎﺴﻴﺔ ـ ﺍﻟﻤﺠﻠﺩ ) (١٦ـ ﺍﻟﻌﺩﺩ ﺍﻷﻭل ـ ٢٠٠٠ ﻵﻥ ، KerΨ=Aﺤﻴﺙ Aﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﻼﻗﺔ ) ،(٢ﻭﻤﻥ ﺨﻭﺍﺹ ﺍﻟﺯﻤـﺭ ﺍﻟﻘﺎﺒﻠـﺔ ﻟﻠﺤـل ﻥ ) N(Aﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻗﺎﺒﻠﺔ ﻟﻠﺤل ﻓﻲ ) ،GL(q,pﻭﺃﻴﻀـﹰﺎ ﻭﺒﺎﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﺍﻟﻌﻼﻗﺔ ) ،(٦ﻓﺈ ﻋﺎﺯﻟﺔ ﻻﺤﺘﻭﺍﺌﻬﺎ ﺍﻟﺯﻤﺭﺓ ﺍﻟﻌﺎﺯﻟﺔ ،Aﻭﻤﻥ ﺃﻋﻅﻤﻴﺔ Gﻓﻲ ) GL(q,pﻓﺈﻥ ) ،G⊇N(Aﻭﺒﻤـﺎ ﻥ G∆Aﺇﺫﹰﺍ: ﺃ )(٧ N(A)=G ﺍﻵﻥ ،ﺒﺤﺴﺏ ] [٢ﺘﻭﺠﺩ ﻤﻥ ﺃﺠل ﺃﻱ ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ،Hﻋﺎﺯﻟﺔ ﻭﻏﻴﺭ ﺘﺒﺩﻴﻠﻴـﺔ ﻤـﻥ ،G ﻭﺫﺍﺕ ﺭﺘﺒﺔ ﻓﺭﺩﻴﺔ rﺤﻴﺙ ) r /| ( P − 1ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ uﺩﻭﺭﻴﺔ ﻭﺫﺍﺕ ﺭﺘﺒـﺔ ﻓﺭﺩﻴـﺔ ﻤـﻥ ﺍﻟﺯﻤﺭﺓ Uﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﻼﻗﺔ ) (٥ﺒﺤﻴﺙ: (I (II ﻥ ، u = Iﺤﻴﺙ Iﻋﻨﺼﺭ ﺍﻟﻭﺤﺩﺓ ﻓﻲ .U ﻋﻨﺩﻤﺎ ﺘﻜﻭﻥ A⊃Hﻓﺈ ـﺔ ﻭ ، u = τ ﻥ uﻋﺎﺯﻟـــ ⊃ Aﻓـــﺈ ـﺩﻤﺎ ﺘﻜـــ ﻭﻋﻨـــ ـﻭﻥ / H ⎤⎡1 q − 3 ⎢ = ، U ∋ τ ، τ 3 = I ، τﻭﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻴﻜﻭﻥ ﻟﺩﻴﻨﺎ ﺃﻴﻀﹰﺎ ﻤﺎ ﻴﻠﻲ: ﺤﻴﺙ ⎥ ⎦⎣1 q − 2 U∆u (١ﻋﻨﺩﻤﺎ ). p − 1 ≡/ 0(mod 4 َ َ ، U ⊃ u δ ∆u (٢ﺤﻴﺙ ) ، uδ = N (uﻭ uδ = δﺤﻴﺙ ⎤⎡ − 1 q − 2 ⎢ = ، U ∋ δ , δ 6 = I , δﻭﻫـــﺫﻩ ﺍﻟﺤﺎﻟـــﺔ ﻤﺤﻘﻘـــﺔ ﻋﻨـــﺩﻤﺎ ⎥ ⎦⎣ − 1 q − 3 ). p − 1 ≡ 0(mod 4 ﻤﻥ ﺘﻌﺭﻴﻑ ﺍﻟﻌﺎﺯﻟﻴﺔ ﻓﺈﻥ ) N(uﺯﻤﺭﺓ ﺍﻟﻤﻨﻅﻡ ﻟــ uﻓﻲ ) ،SL(٢,qﺘﺸﻜل ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻋﺎﺯﻟﺔ ﻻﺤﺘﻭﺍﺌﻬﺎ ﻓﻲ ﺍﻟﺤﺎﻟﺔ ) (Iﺍﻟﺯﻤﺭﺓ ﺍﻟﻌﻅﻤﻰ ﺍﻟﻌﺎﺯﻟﺔ ﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل ،Uﻭﻻﺤﺘﻭﺍﺌﻬﺎ ﺍﻟﻌﻨﺼﺭ ﺍﻟﻌﺎﺯل τﻓﻲ ﺍﻟﺤﺎﻟﺔ ) ،(IIﻜﻤﺎ ﺃﻨﻪ ﺃﻴﻀﹰﺎ ﻴﻤﻜﻥ ﺍﻟﺘﺤﻘﻕ ﻤﻥ ﺃﻥ ﺍﻟﺯﻤﺭﺓ ) N(uﺘﺸـﻜل ﺯﻤـﺭﺓ ﺠﺯﺌﻴﺔ ﻗﺎﺒﻠﺔ ﻟﻠﺤل ﻓﻲ ) SL(٢,qﺒﺎﻋﺘﻤﺎﺩ ﺍﻷﺴﻠﻭﺏ ﻨﻔﺴﻪ ﺍﻟﻤﺘﺒﻊ ﻓﻲ ﺍﻟﺒﺭﻫﺎﻥ ﻋﻠﻰ ﻗﺎﺒﻠﻴﺔ ﺍﻟﺤل ﻟﺯﻤﺭﺓ ﺍﻟﻤﻨﻅﻡ ﻟﻠﺯﻤﺭﺓ ﺍﻟﻌﺎﺯﻟﺔ ،ﻭﺍﻟﻭﺍﺭﺩ ﻓﻲ ﺍﻟﻤﺒﺭﻫﻨﺔ ﺍﻟﺴﺎﺒﻘﺔ ،ﻭﻤﻥ ﺃﻋﻅﻤﻴﺔ Uﻓﻲ )SL(٢,q ﻓﺈﻥ: )(٨ N(u)⊆U ١٠٧ ﻴﻌﻘﻭﺏ ﻭ ﻋﻠﻲ ـ ﺩﺭﺍﺴﺔ ﻤﻨﻅﻡ ﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﺍﻟﻌﺎﺯﻟﺔ ﻭﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل ﻭﺫﺍﺕ ﺍﻟﺘﺭﺒﺔ ﺍﻟﻔﺭﺩﻴﺔ ﻓﻲ ﺍﻟﺯﻤﺭﺓ … ﻤﻥ ﻨﺎﺤﻴﺔ ﺜﺎﻨﻴﺔ :ﺒﻤﺎ ﺃﻨﹼﻪ ﻴﻭﺠﺩ ﺘﻘﺎﺒل ١ﻟـ ١ﺒﻴﻥ ﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﻓﻲ ﺍﻟﻤﻨﻁﻠـﻕ ﻭﺍﻟﺘـﻲ ﻥ ﺯﻤـﺭﺓ ﺘﺤﻭﻱ ﺍﻟﻨﻭﺍﺓ Aﻭﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﻓﻲ ﺍﻟﻤﺴﺘﻘﺭ ،ﻭﺒﺎﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﺍﻟﻌﻼﻗـﺔ ) (٤ﻓـﺈ ﺍﻟﻤﻨﻅﻡ ﻟـﹻ Hﻓﻲ ) GL(q,pﺘﺭﺘﺒﻁ ﻤﻊ ﺯﻤﺭﺓ ﺍﻟﻤﻨﻅﻡ ﻟـﹻ uﻓﻲ ) SL(٢,qﺒﺎﻟﻌﻼﻗﺔ ﺍﻟﺘﺎﻟﻴﺔ: ) Ψ1 ( N (H )) = N (u ); Ψ1 = Ψ | N ( H )(٩ ﻭﻫﺫﻩ ﺍﻟﻌﻼﻗﺔ ﻤﺤﻘﻘﺔ ﺩﻭﻤﹰﺎ ﺒﺤﺴﺏ ﺍﻟﺒﻨﺎﺀ ﻟﻠﺘﺸﺎﻜل ﺍﻟﺯﻤﺭﻱ Ψﺍﻟﻤﻌﺭﻑ ﺒﺎﻟﻌﻼﻗﺔ ) (٥ﻤـﻊ ﻼ ﺯﻤﺭﻴﹰﺎ ﻏﺎﻤﺭﺍﹰ، ﺍﻷﺨﺫ ﺒﺎﻟﺤﺴﺒﺎﻥ ﺘﻌﺭﻴﻑ ﺍﻟﻤﻨﻅﻡ ﻟﻠﺯﻤﺭﺓ ﺍﻟﺠﺯﺌﻴﺔ ،ﻜﻤﺎ ﺃﻥ Ψ1ﻴﺸﻜل ﺘﺸﺎﻜ ﹰ ﻨﻭﺍﺘﻪ ، ker Ψ1 = Aﺤﻴﺙ Aﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﻼﻗﺔ ) ،(٢ﻭﺒﺎﻟﺘﺎﻟﻲ: ) N (H ) ≅ N (u )(١٠ A ﻥ (١ﻤﻥ ) (IIﻟﺩﻴﻨﺎ ، U > uﻭﻤـﻥ ﺍﻟﻌﻼﻗـﺔ ) (٨ﻴﻨـﺘﺞ ﺃ ﺍﻵﻥ ،ﺒﺤﺴﺏ ) (Iﻭﺒﺤﺴﺏ ) َ ،N(u)=Uﻨﺤﺼل ﺃﻴﻀﹰﺎ ﻤﻥ ﺍﻟﻌﻼﻗﺘﻴﻥ ) (٦ﻭ ) (١٠ﻋﻠﻰ: )N ( H ) = A .U = N ( A ﻥ . N (H ) = G ﻭﻤﻥ ﺍﻟﻌﻼﻗﺔ ) (٧ﻓﺈ ﻥ: (٢ﻤﻥ ) (IIﻭﺒﺎﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﺍﻟﻌﻼﻗﺔ ) (١٠ﻴﻨﺘﺞ ﺃ ﻭﺒﺤﺴﺏ ﺍﻟﺤﺎﻟﺔ ) َ N (H ) = A . uδ ﻥ: ﻭﻟﻜﻥ ،ﺒﺤﺴﺏ ﺍﻟﺒﻨﺎﺀ ﻟـﹻ Aﺍﻟﻤﻌﺭﻑ ﺒﺎﻟﻌﻼﻗﺔ ) (٢ﻓﺈ )A = q 2 ( p − 1 ﻭﻤﻨﻪ: )N (H ) = 6 q 2 ( p − 1 * ﺤﺎﻟﺔ ﺨﺎﺼﺔ: ﻤﻥ ﺃﺠل ﺃﻱ ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ Hﻋﺎﺯﻟﺔ ﺘﺒﺩﻴﻠﻴﺔ ﻓﻲ ﺍﻟﺯﻤﺭﺓ Gﻭﺫﺍﺕ ﺭﺘﺒﺔ ﻓﺭﺩﻴﺔ ،rﺤﻴـﺙ ﻥ: ) r /| ( P − 1ﻓﺈ - ) N (H ) = (q − 1)q 2 ( p − 1ﻋﻨﺩﻤﺎ . A ⊃ H ) N (H ) = 3 ( p − 1ﻓﻴﻤﺎ ﻋﺩﺍ ﺫﻟﻙ. ١٠٨ ﻤﺠﻠﺔ ﺠﺎﻤﻌﺔ ﺩﻤﺸﻕ ﻟﻠﻌﻠﻭﻡ ﺍﻷﺴﺎﺴﻴﺔ ـ ﺍﻟﻤﺠﻠﺩ ) (١٦ـ ﺍﻟﻌﺩﺩ ﺍﻷﻭل ـ ٢٠٠٠ ﺍﻟﺒﺭﻫﺎﻥ: ﻟﺘﻜﻥ Hﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻤﺎ ﻋﺎﺯﻟﺔ ﺘﺒﺩﻴﻠﻴﺔ ،ﻭﺫﺍﺕ ﺭﺘﺒﺔ ﻓﺭﺩﻴﺔ rﺤﻴﺙ ) ، r /| ( P − 1ﻋﻨﺩﺌﺫ ﻭﺒﺤﺴﺏ ﺍﻟﻤﺒﺭﻫﻨﺔ ﻓﺈ ﻥ ) ، G ⊇ N (Hﺍﻵﻥ ،ﻤﻥ ﺃﺠل ﺘﺤﺩﻴﺩ ﺭﺘﺒﺔ ﺍﻟﻤﻨﻅﻡ ﻟـﹻ Hﺴﻨﺩﺭﺱ ﺍﻟﺤﺎﻟﺘﻴﻥ ﺍﻟﺘﺎﻟﻴﺘﻴﻥ: ﻥ ﺍﻟﺸﻜل ﺍﻟﻌﺎﻡ ﻟـﹻ Hﺴﻴﻜﻭﻥ ﻜﻤﺎ ﻴﻠﻲ: ( I ′ﺇﺫﺍ ﻜﺎﻨﺕ A ⊃ Hﻓﺈ H = m F1 ; m = a i b j ; m = q,0 ≤ i ≤ q − 1,0〈 j ≤ q − 1 )(١١ ﺤﻴﺙ aﻭ ، A ∋ bﻭ F1ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻤﻥ ﺍﻟﺯﻤﺭﺓ ،Fﺘﺤﻭﻱ ﺍﻟﻌﻨﺼﺭ ، ω I qﺤﻴﺙ ωﻭ Fﻭ Aﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﻼﻗﺘﻴﻥ ) (١ﻭ ):(٢ ﻥ ﺠﻤﻴﻊ ﺍﻟﺯﻤﺭ ﺍﻟﻌﺎﺯﻟﺔ ﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل ﻤﻥ ﺍﻟﺭﺘﺒﺔ rﺍﻟﻤﺤﻘﻘﺔ ﻟﻠﺸﺭﻭﻁ ﻤﻥ ﻨﺎﺤﻴﺔ ﺜﺎﻨﻴﺔ ،ﺒﻤﺎ ﺃ ﺍﻟﺴﺎﺒﻘﺔ ،ﺘﺸﻜل ﺼﻔﹰﺎ ﻤﻥ ﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﺍﻟﻤﺘﺭﺍﻓﻘﺔ ﻓﻲ ) GL(q,pﻓﺈﻨﹼﻪ ﻴﻜﻔﻲ ﻟﺘﺤﺩﻴـﺩ ﺭﺘﺒـﺔ ﺍﻟﻤﻨﻅﻡ ﻟﻠﺯﻤﺭ ﻤﻥ ﻫﺫﺍ ﺍﻟﺼﻑ ،ﺃﻥ ﺘﺤﺩﺩ ﺭﺘﺒﺔ ﺍﻟﻤﻨﻅﻡ ﻟﻤﻤﺜل ﻭﺍﺤﺩ ﻤﻥ ﻫﺫﺍ ﺍﻟﺼﻑ ﻤﻥ ﻭﺠﻬﺔ ﻨﻅﺭ ﺍﻟﺘﺭﺍﻓﻕ ،ﻭﻟﻴﻜﻥ ﻫﺫﺍ ﺍﻟﻤﻤﺜل ﻫﻭ: H = b F1 ; b q = 1 ﻭ bﻤﻌﺭﻑ ﺒﺎﻟﻌﻼﻗﺔ ) ،(٢ﻭ F1ﻤﻌﺭﻑ ﺒﺎﻟﻌﻼﻗﺔ ).(١١ ﻤﻥ ﺃﺠل ﺫﻟﻙ ﺘﻭﺠﺩ ﻓﻲ ﺍﻟﺯﻤﺭﺓ Uﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﻼﻗﺔ ) (٥ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ umﻤﺜﻠﺜﻴـﺔ ﻤـﻥ ﺍﻷﺴﻔل ،ﻭﻟﻬﺎ ﺍﻟﺭﺘﺒﺔ ،q-١ﺩﻭﺭﻴﺔ u m = fﻤﻭﻟﺩﺓ ﺒﺎﻟﻌﻨﺼﺭ fﺒﺤﻴﺙ: ⎤ ⎡α 0 ⎢= f ) ⎥; α, γ, δ ∈ GF(q ⎦⎥⎣⎢ γ δ ﻭﺍﻟﺯﻤﺭﺓ umﻤﻭﺠـﻭﺩﺓ ﺩﻭﻤـﹰﺎ ﺒﺤﺴـﺏ ﺍﻟﺒﻨـﺎﺀ ﻟـــﹻ Uﻜﻤـﺎ ﻓـﻲ ] ،[٢ﻋﻨﺩﺌـﺫ ﻼ ﺯﻤﺭﻴﹰﺎ ﻏﺎﻤﺭﹰﺍ: ﺍﻟﺘﻁﺒﻴﻕ ) Ψm = Ψ | N ( Hﺍﻟﻤﻌﺭﻑ ﻜﻤﺎ ﻴﻠﻲ ﻴﺸﻜل ﺘﺸﺎﻜ ﹰ ⎤ ⎡α 0 ⎢ Ψm : N (H ) ⊆ G → u m ; x a )⎥ (١٢ ⎦ ⎣γ δ ﺤﻴﺙ GF (q ) ∋ δ , γ , αﻭﺘﺭﺘﺒﻁ ﻓﻴﻤﺎ ﺒﻴﻨﻬﺎ ﺒﺎﻟﻌﻼﻗﺎﺕ: xax −1 = λa α b γ , xbx −1 = b δ ١٠٩ ﻴﻌﻘﻭﺏ ﻭ ﻋﻠﻲ ـ ﺩﺭﺍﺴﺔ ﻤﻨﻅﻡ ﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﺍﻟﻌﺎﺯﻟﺔ ﻭﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل ﻭﺫﺍﺕ ﺍﻟﺘﺭﺒﺔ ﺍﻟﻔﺭﺩﻴﺔ ﻓﻲ ﺍﻟﺯﻤﺭﺓ … ﺤﻴﺙ aﻭ ، A ∋ bﻭ A, ∆ ∋ λﻭ ∆ ﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﻼﻗﺘﻴﻥ ) (٢ﻭ ).(١ ﻼ ﺯﻤﺭﻴﺎﹰ ،ﻤﻥ ﺃﺠل ﺫﻟﻙ ﻴﻜﻔـﻲ ﻥ ﺍﻟﺘﻁﺒﻴﻕ Ψmﻴﺸﻜل ﺘﺸﺎﻜ ﹰ ﻤﻥ ﺍﻟﻤﻤﻜﻥ ﺍﻟﺒﺭﻫﺎﻥ ﻋﻠﻰ ﺃ ﺍﻟﺘﺤﻘﻕ ﺃﻥ ﺼﻭﺭﺓ ﺠﺩﺍﺀ ﺃﻱ ﻋﻨﺼﺭﻴﻥ ﻤﻥ ﺍﻟﺯﻤﺭﺓ ﺍﻟﺠﺯﺌﻴﺔ ) N(Hﺘﺴﺎﻭﻱ ﺠﺩﺍﺀ ﺼـﻭﺭﻫﻤﺎ ﺃﻱ ﻤﻬﻤﺎ ﻴﻜﻥ N(H)∋x,yﻓﺈﻥ ﺍﻟﻤﺴﺎﻭﺍﺓ ﺍﻟﺘﺎﻟﻴﺔ ﻴﺠﺏ ﺃﻥ ﺘﻜﻭﻥ ﺼﺤﻴﺤﺔ: ) Ψm ( xy) = Ψm ( x)Ψm ( y )*( ⎤ ⎡α 1 0 ⎢ = )Ψm ( x ﻨﻔﺭﺽ ﺃﻥ ⎥ ⎦ ⎣γ 1 δ 1 ﻋﻨﺩﺌﺫ ﻓﺈﻥ: xbx −1 = b δ 1 æ ⎤ ⎡α 2 0 ⎢ = )Ψm ( y ⎥ ⎦ ⎣γ 2 δ 2 xax −1 = λ 1a α 1 b γ 1 , ﺃﻴﻀﹰﺎ: yby −1 = bδ 2 yay −1 = λ 2 a α 2 b γ 2 , ﺤﻴﺙ i = 1,2 æ GF (q) ∋ α i , γ i , δ i æ ∆ ∋ λ i ﻭﺒﺤﺴﺏ ﺨﻭﺍﺹ ﺍﻟﻌﻨﺎﺼﺭ ﺍﻟﻤﺒﺎﺩﻟﺔ ،ﻭﺒﻌﺩ ﺴﻠﺴﻠﺔ ﻤﻥ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﻟﺠﺒﺭﻴﺔ ،ﻴﻤﻜﻥ ﺍﻟﺘﺤﻘـﻕ ﻥ: ﺃ xyby −1 x −1 = bδ 1δ 2 xyay −1 x −1 = µa α 1α 2 b γ 1α 2 +δ 1γ 2 , ﺤﻴﺙ ∆ = GF ( P) ∋ µ ﻭﺒﺎﻟﺘﺎﻟﻲ ﺒﺤﺴﺏ ﺍﻟﺒﻨﺎﺀ ﻟﻠﺩﺍﻟﺔ Ψmﺍﻟﻤﻌﺭﻑ ﺒﺎﻟﻌﻼﻗﺔ ) (١٢ﻓﺈﻥ ﺍﻟﻤﺴﺎﻭﺍﺓ ﺘﻜـﻭﻥ ﻤﺤﻘﻘـﺔ ﺒﻴﻥ ﻁﺭﻓﻲ ﺍﻟﻌﻼﻗﺔ )*( ﻭﺒﺎﻟﺘﺎﻟﻲ ﻓﺈﻥ Ψmﺘﺸﺎﻜل ﺯﻤﺭﻱ ﻭﺃﻴﻀﹰﺎ ﻏـﺎﻤﺭ ،ﺒﺎﻟﺤﻘﻴﻘـﺔ ﻟـﻴﻜﻥ ، SL(2, q ) ⊃ u m ∋ fﻭﻟﻴﻜﻥ A ∋ c, dﺒﺤﻴـﺙ c = λa α b γﻭ ، d = b δﻭﺒﺤﻴـﺙ ﺘﻜﻭﻥ ﺍﻟﻘﻭﻯ ﺍﻟﻤﺄﺨﻭﺫﺓ GF (q ) ∋ δ , γ , αﺒﻤﺜﺎﺒﺔ ﻋﻨﺎﺼﺭ ﻟﻠﻤﺼﻔﻭﻓﺔ ،hﻜﺫﻟﻙ A ∋ b ،a ﻭ ، ∆ ∋ λﺤﻴﺙ Aﻭ ∆ ﻤﻌﺭﻓﺘﺎﻥ ﺒﺎﻟﻌﻼﻗﺘﻴﻥ ) (٢ﻭ ).(١ ﻥ: ﺒﻔﺭﺽ λ = 1ﻭﺒﺎﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﺍﻟﻌﻼﻗﺔ ) ،(٢ﻨﺠﺩ ﺃ = ω αδ (c, d ) = (a α bγ , bδ ) = (a α , bδ )(bγ , bδ ) = (a α , bδ ) = (a, b)αδ ١١٠ ﻤﺠﻠﺔ ﺠﺎﻤﻌﺔ ﺩﻤﺸﻕ ﻟﻠﻌﻠﻭﻡ ﺍﻷﺴﺎﺴﻴﺔ ـ ﺍﻟﻤﺠﻠﺩ ) (١٦ـ ﺍﻟﻌﺩﺩ ﺍﻷﻭل ـ ٢٠٠٠ ⎤ ⎡α 0 ﻭﺒﻤﺎ ﺃ ⎢ = SL(2, q ) ∋ hﺇﺫﺍ .det h = αδ=١ ﻥ ⎥ ⎦ ⎣γ δ ﻭﻤﻨﻪ: ) (c, d ) = ω αδ = ω = (a, b ﺃﻴﻀﹰﺎ: b q = d q = 1, a q = c q = 1 ﻋﻨﺩﺌﺫ ﺒﺤﺴﺏ ] [١ﻓﺈﻨﹼﻪ ﻴﻭﺠﺩ ﻋﻨﺼﺭ GL(q, p ) ∋ xﺒﺤﻴﺙ: )(1′′ )(١٣ )(2′′ xax −1 = c = λa α b γ δ =d =b −1 xbx ﻥ ، N (H ) ∋ xﻜـﺫﻟﻙ (٢ﻓﺈ ﻥ ، G = N ( A) ∋ xﻭﺃﻴﻀﹰﺎ ﻤﻥ ﺍﻟﻌﻼﻗﺔ ) ً ﻤﻥ ﺍﻟﻭﺍﻀﺢ ﺃ ﻤﻥ ﺍﻟﻌﻼﻗﺘﻴﻥ ) (١٢ﻭ ) (١٣ﻓﺈ ﻥ ، Ψm ( x ) = hﻭﺒﺎﻟﺘﺎﻟﻲ Ψmﻏﺎﻤﺭ. ﻥ ، ker Ψm = Aﺤﻴﺙ Aﻤﻌﺭﻓـﺔ ﺍﻵﻥ ،ﺒﺎﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﺍﻟﻌﻼﻗﺘﻴﻥ ) (٢ﻭ ) (١٢ﻨﺠﺩ ﺃ ﺒﺎﻟﻌﻼﻗﺔ ) ،(٢ﻭﺒﺎﻟﺘﺎﻟﻲ N (H ) ≅ u mﻭﻤﻨﻪ: A 2 )N (H ) = A . u m = (q − 1)q ( p − 1 ⊃ Aﻓﺈﻨﹼﻪ ﺒﺤﺴﺏ ] [٢ﺴﻴﻜﻭﻥ ﻟﻬﺎ ﺍﻟﺸﻜل ﺍﻟﺘﺎﻟﻲ: ( II ′ﺃﻤﺎ ﺇﺫﺍ ﻜﺎﻨﺕ / H )H = x i F2 ; x = 3q; i = 1, q (١٤ ﺤﻴﺙ F٢ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻤﻥ ﺍﻟﺯﻤﺭﺓ ،Fﻜﺫﻟﻙ ، x ∩ F = ωﺤﻴﺙ ωﻭ Fﻤﻌﺭﻓﺎﻥ ﺒﺎﻟﻌﻼﻗﺘﻴﻥ ) (٢ﻭ ) ،(١ﻭ Ψ ( x ) = τ ﺤﻴﺙ τ 3 = Iﻭ U ∋ τ ≠ Iﻭﻫـﻭ ﻤﻌـﺭﻑ ﺒﺎﻟﺤﺎﻟﺔ ) (IIﺍﻟﻭﺍﺭﺩﺓ ﻓﻲ ﺍﻟﻤﺒﺭﻫﻨﺔ ﺍﻟﺴﺎﺒﻘﺔ ﻭﺒﺤﻴﺙ Ψﻭ Uﻤﻌﺭﻓﺎﻥ ﺒﺎﻟﻌﻼﻗﺔ ).(٥ ⎤⎡1 q − 3 ⎢ = ، Ψ ( x ) = τﻭﺒﺤﺴﺏ ﺍﻟﺒﻨـﺎﺀ ﻟــﹻ Ψﺍﻟﻤﻌـﺭﻑ ﺍﻵﻥ ،ﻤﻥ ﺍﻟﻌﻼﻗﺔ ⎥ ⎦⎣1 q − 2 ﻥ ﺃﻋﻅﻡ ﺯﻤﺭﺓ ﺒﺎﻟﻌﻼﻗﺔ ) (٥ﻭﻤﻥ ﻜﻭﻥ ) ، A = Ψ −1 (Iﺤﻴﺙ Aﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﻼﻗﺔ ) (٢ﻨﺠﺩ ﺃ ﺠﺯﺌﻴﺔ ﻓﻲ Gﺘﻜﻭﻥ Hﻨﻅﺎﻤﻴﺔ ﻓﻴﻬﺎ ﻫﻲ ﻤﻥ ﺍﻟﺸﻜل: ١١١ ﻴﻌﻘﻭﺏ ﻭ ﻋﻠﻲ ـ ﺩﺭﺍﺴﺔ ﻤﻨﻅﻡ ﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﺍﻟﻌﺎﺯﻟﺔ ﻭﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل ﻭﺫﺍﺕ ﺍﻟﺘﺭﺒﺔ ﺍﻟﻔﺭﺩﻴﺔ ﻓﻲ ﺍﻟﺯﻤﺭﺓ … ; M = x, F = x F G∆Fﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﻼﻗﺔ ) (١ﻭ xﻤﻌﺭﻑ ﺒﺎﻟﻌﻼﻗﺔ ).(١٤ ﻥ: ﺇﺫﺍ ﻤﻥ ﺘﻌﺭﻴﻑ ﺍﻟﻤﻨﻅﻡ ﻭﻤﻥ ﻜﻭﻥ ) G ⊇ N (Hﻓﺈ N (H ) = M = x F ﻭﻤﻨﻪ: = 3 ( p − 1). x .F x ∩F = ) N (H ﻨﻅﺭﻴﺔ: ﻟﺘﻜﻥ ﺍﻟﺯﻤﺭﺓ ) Gﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﻼﻗﺔ ) ((٢ﻤﻥ ﺍﻟﻤﺭﺘﺒﺔ nﻭﻟﻴﻜﻥ rﻗﺎﺴﻤﹰﺎ ﻟــ nﻋﻨﺩﺌﺫ ﻤـﺎ ﻴﻠﻲ ﺼﺤﻴﺢ: (١ﺘﻭﺠﺩ ﻓﻲ Gﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻋﺎﺯﻟﺔ ﻭﺍﺤﺩﺓ ﻋﻠﻰ ﺍﻷﻗل ﻤﻥ ﺍﻟﺭﺘﺒﺔ .r (٢ﺠﻤﻴﻊ ﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﺍﻟﻌﺎﺯﻟﺔ ﻓﻲ Gﻤﻥ ﺍﻟﺭﺘﺒﺔ rﻤﺘﺭﺍﻓﻘﺔ ﻓﻲ .G ﺍﻟﺒﺭﻫﺎﻥ: ﻨﺠﺭﻱ ﺍﻻﺴﺘﻘﺭﺍﺀ ﺒﺎﺴﺘﺨﺩﺍﻡ ﻁﺭﻴﻘﺔ ﺍﻻﺴﺘﻘﺭﺍﺀ ﺍﻟﺭﻴﺎﻀﻲ .nﺇﺫﺍ ﻜﺎﻨﺕ ،n=١ﻋﻨﺩﺌﺫ ﻓـﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﺒﻤﺎ ﺃﻥ Gﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻋﺎﺯﻟﺔ ﻭﻗﺎﺒﻠﺔ ﻟﻠﺤل ﻓﻲ ) GL(q,pﻓﺈﻨﻪ ﻴﻤﻜﻥ ﺩﻭﻤﹰﺎ ﺇﻴﺠﺎﺩ ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻋﺎﺯﻟﺔ ﻭﻗﺎﺒﻠﺔ ﻟﻠﺤل ،ﻭﻟﻬﺎ ﺍﻟﺭﺘﺒﺔ ،n=١ﻭﻫﻲ ﻤﻥ ﺍﻟﺸﻜل ، G Gﻭﻤﻥ ﺍﻟﻭﺍﻀﺢ ﺃﻨﻬﺎ ﺘﺤﻘﻕ ﺸﺭﻭﻁ ﺍﻟﻨﻅﺭﻴﺔ ﻋﻠﻤﹰﺎ ﺃﻥ ﻋﻨﺼﺭ ﺍﻟﻭﺤﺩﺓ ﻓﻲ ﻫﺫﻩ ﺍﻟﺯﻤﺭﺓ ﻫﻭ ﻋﻨﺼﺭ ﻋﺎﺯل ﻟﻜﻭﻥ Gﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻋﺎﺯﻟﺔ ﻭﻗﺎﺒﻠﺔ ﻟﻠﺤل ﻓﻲ ) .GL(q,pﻨﻔﺭﺽ ﺃﻥ ﺍﻟﻨﻅﺭﻴﺔ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠـل ﻜل ﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﺍﻟﻌﺎﺯﻟﺔ ،ﻭﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل ،ﻭﺍﻟﺘﻲ ﺭﺘﺒﺘﻬﺎ ﺃﺼﻐﺭ ﻤﻥ ،nﻨﺭﻤﺯ ﻷﺼـﻐﺭ -q ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻨﻅﺎﻤﻴﺔ ﻓﻲ Gﺒﺎﻟﺭﻤﺯ ،Qﻓﺘﻜﻭﻥ Qﺒﺤﺴـﺏ ﺍﻟﺒﻨـﺎﺀ ﻟﻠﺯﻤـﺭﺓ ) Gﺍﻟﻤﻌﺭﻓـﺔ ﺒﺎﻟﻌﻼﻗﺔ ) ((٢ﻟﻬﺎ ﺍﻟﺸﻜل ﺍﻟﺘﺎﻟﻲ: Q = ω I q ; ω q = 1, ) 1 ≠ ω ∈ GF ( P ﺤﻴﺙ ωﻭ Fﻤﻌﺭﻓﺎﻥ ﺒﺎﻟﻌﻼﻗﺘﻴﻥ ) (١ﻭ ).(٢ ١١٢ ﻤﺠﻠﺔ ﺠﺎﻤﻌﺔ ﺩﻤﺸﻕ ﻟﻠﻌﻠﻭﻡ ﺍﻷﺴﺎﺴﻴﺔ ـ ﺍﻟﻤﺠﻠﺩ ) (١٦ـ ﺍﻟﻌﺩﺩ ﺍﻷﻭل ـ ٢٠٠٠ (A ﺇﺫﺍ ﻜﺎﻥ q | rﻓﺒﻤﻭﺠﺏ ﺍﻟﻔﺭﺽ ﺒﺎﻻﺴﺘﻘﺭﺍﺀ ﺘﻭﺠﺩ ﻓﻲ ﺍﻟﺯﻤﺭﺓ r ﺠﺯﺌﻴﺔ Bﻋﺎﺯﻟﺔ ﻤﻥ ﺍﻟﺭﺘﺒﺔ Q q Q Gﺯﻤـﺭﺓ ،ﺤﻴﺙ rﻗﺎﺴﻡ ﻤﺎ ﻟــﹻ G = nﻭﺒﺎﻟﺘﺎﻟﻲ ﺭﺘﺒـﺔ B ﻫﻲ rﺃﻱ ، B = rﻭﻜﺫﻟﻙ ﺍﻟﺯﻤﺭﺓ Bﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻋﺎﺯﻟﺔ ﻭﻗﺎﺒﻠﺔ ﻟﻠﺤل ﻓـﻲ ﺍﻟﺯﻤـﺭﺓ G ﺒﺤﺴﺏ ﺨﻭﺍﺹ ﺍﻟﺯﻤﺭ ﺍﻟﻌﺎﺯﻟﺔ ﻭﺍﻟﺯﻤﺭ ﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل. ﻥ ﺃﻱ ﺯﻤـﺭﺘﻴﻥ ﺠـﺯﺌﻴﺘﻴﻥ B1ﻭ ﻤﻥ ﺍﻟﺴﻬل ﻤﻼﺤﻅﺔ ﺃﻨﹼﻪ ﻀﻤﻥ ﺍﻟﺸﺭﻭﻁ q | rﺃ B2ﻋﺎﺯﻟﺘﺎﻥ ﻓﻲ ،Gﺤﻴﺙ B1 = B2 = rﺘﺤﻭﻴﺎﻥ ﺍﻟﺯﻤﺭﺓ Qﻭﺒﺤﺴﺏ ﺨﻭﺍﺹ ﺍﻟﺯﻤـﺭﺓ ﻥ ﺍﻟﻌﺎﺯﻟﺔ ﻭﺍﻟﺯﻤﺭ ﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل ﻓﺈ ﻓﻲ Q Q B1ﻭ Q ﻥ Gﻭﺒﻤﻭﺠﺏ ﺍﻟﻔﺭﺽ ﺒﺎﻻﺴﺘﻘﺭﺍﺀ ﻓﺈ B2ﺯﻤﺭﺘﺎﻥ ﺠﺯﺌﻴﺘﺎﻥ ﻋﺎﺯﻟﺘﺎﻥ ﻭﻗﺎﺒﻠﺘﺎﻥ ﻟﻠﺤل Q B1ﻭ Q B2ﻤﺘﺭﺍﻓﻘﺘﺎﻥ ﻓﻲ Q Gﺒﺤﺴﺏ ) ،(٢ﻭﺒﺎﻟﺘﺎﻟﻲ B1ﻭ B2ﻤﺘﺭﺍﻓﻘﺘﺎﻥ ﻓﻲ .G (IIﺃﻤﺎ ﺇﺫﺍ ﻜﺎﻥ ، q /| rﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ،ﻓﺈﻥ ﺍﻟﺯﻤﺭﺓ Gﺘﺤﻭﻱ ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻋﺎﺯﻟﺔ ﻤـﻥ ﺍﻟﺭﺘﺒﺔ ،rﺤﻴﺙ ،r<nﻭﻫﺫﻩ ﺍﻟﺯﻤﺭﺓ ﻤﻭﺠﻭﺩﺓ ﺩﻭﻤﹰﺎ ﺒﺤﺴﺏ ﺍﻟﺒﻨﺎﺀ ﻟﻠﺯﻤﺭﺓ ،Gﻭﻤـﻥ ﺃﺸـﻜﺎﻟﻬﺎ ﺇﺤﺩﻯ ﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﻼﻗﺔ ) ،(١٤ﻭﺒﻬﺫﺍ ﻴﻜﻭﻥ ﻗﺩ ﺘ ﻡ ﺒﺭﻫﺎﻥ ).(١ ﻭﻤﻥ ﺃﺠل ﺒﺭﻫﺎﻥ ) (٢ﻓﻲ ﺍﻟﺤﺎﻟﺔ ﺍﻟﺘﻲ ﻴﻜﻭﻥ ﻓﻴﻬﺎ ، q /| rﻟـﺩﻴﻨﺎ ﻤـﻥ ﺃﺠـل ﺃﻱ ﻥ B1ﻭ B2ﺴﺘﻜﻭﻨﺎﻥ ﻗﺎﺒﻠﺘﻴﻥ ﻟﻠﺤل ﻓـﻲ ﺯﻤﺭﺘﻴﻥ ﺠﺯﺌﻴﺘﻴﻥ ﻋﺎﺯﻟﺘﻴﻥ B1ﻭ B2ﻓﻲ Gﻓﺈ ﻥ B1ﻭ B2 Gﺃﻋﻅﻡ ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻋﺎﺯﻟﺔ ﻭﻗﺎﺒﻠﺔ ﻟﻠﺤل ﻓﻲ ) ،GL(q,pﻭﺒﺤﺴﺏ ] [٣ﻓـﺈ ﺴﺘﻜﻭﻨﺎﻥ ﺯﻤﺭﺘﻴﻥ ﺩﻭﺭﻴﺘﻴﻥ ﻭﺒﺎﻟﺘﺎﻟﻲ ﻓﻬﻤﺎ ﻤﺘﺭﺍﻓﻘﺘﺎﻥ ﻓﻲ Gﻭﻫﻭ ﺍﻟﻤﻁﻠﻭﺏ. ١١٣ … ﻴﻌﻘﻭﺏ ﻭ ﻋﻠﻲ ـ ﺩﺭﺍﺴﺔ ﻤﻨﻅﻡ ﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﺍﻟﻌﺎﺯﻟﺔ ﻭﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل ﻭﺫﺍﺕ ﺍﻟﺘﺭﺒﺔ ﺍﻟﻔﺭﺩﻴﺔ ﻓﻲ ﺍﻟﺯﻤﺭﺓ REFERENCES ١- D. A. Soprnenko, Matrices groups, “Naouka”, MOSCOW, ١٩٧٢. ٢- D. Iskandar Ali, Salwa Yacoub, The Studying of the Maximal Solvable Invariant Sub Groups in a Group GL(٥,p), which p is a prime number, Tishreen University Journal, ١٩٩٧. ٣- B. Huppert. Endliche Gruppen I (book). Berlin – Hedellurg, New York, ١٩٦٤. ٤- H- wielnat, Finite Permutation groups, New York, London, Acad, Press ١٩٦٤. ٥- Johnf.Humphreys, A Course in Group Theory, Oxford, New York, Tokyo, Press ١٩٩٦. ٦- Michale Aschbacher, Finite Group Theory, Cambridge, New York, Sydney, New Rochelle, Melbourne, Press ١٩٨٦. ١١٤
© Copyright 2025