IRFP27N60K, SiHFP27N60K Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Low Gate Charge Qg Results in Simple Drive Requirement 600 RDS(on) (Ω) VGS = 10 V 0.18 Qg (Max.) (nC) 180 Qgs (nC) 56 Qgd (nC) 86 Configuration Available • Improved Gate, Avalanche and Dynamic dV/dt RoHS* COMPLIANT Ruggedness • Fully Characterized Capacitance and Avalanche Voltage and Current Single • Enhanced Body Diode dV/dt Capability D • Lead (Pb)-free Available TO-247 APPLICATIONS • Hard Switching Primary or PFC Switch G • Switch Mode Power Supply (SMPS) • Uninterruptible Power Supply S D • High Speed Power Switching S G • Motor Drive N-Channel MOSFET ORDERING INFORMATION Package TO-247 IRFP27N60KPbF Lead (Pb)-free SiHFP27N60K-E3 IRFP27N60K SnPb SiHFP27N60K ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 600 Gate-Source Voltage VGS ± 30 VGS at 10 V Continuous Drain Current Pulsed Drain TC = 25 °C ID TC = 100 °C Currenta UNIT V 27 18 A IDM 110 4.0 W/°C EAS 530 mJ Currenta IAR 27 A Repetitive Avalanche Energya EAR 50 mJ Linear Derating Factor Single Pulse Avalanche Energyb Repetitive Avalanche TC = 25 °C Maximum Power Dissipation PD 500 W dV/dt 13 V/ns TJ, Tstg - 55 to + 150 Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque for 10 s 6-32 or M3 screw 300d °C 10 lbf · in 1.1 N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting TJ = 25 °C, L = 1.4 mH, RG = 25 Ω, IAS = 27 A, dV/dt = 13 V/ns (see fig. 12). c. ISD ≤ 27 A, dI/dt ≤ 390 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91219 S-Pending-Rev. B, 12-Jun-08 WORK-IN-PROGRESS www.vishay.com 1 IRFP27N60K, SiHFP27N60K Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 40 Case-to-Sink, Flat, Greased Surface RthCS 0.24 - Maximum Junction-to-Case (Drain) RthJC - 0.29 UNIT °C/W SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage VDS VGS = 0 V, ID = 250 µA 600 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mA - 640 - mV/°C VGS(th) VDS = VGS, ID = 250 µA 3.0 - 5.0 V Gate-Source Leakage IGSS VGS = ± 30 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 600 V, VGS = 0 V - - 50 VDS = 480 V, VGS = 0 V, TJ = 125 °C - - 250 µA - 0.18 0.22 Ω gfs VDS = 50 V, ID = 16 A 14 - - S Input Capacitance Ciss VGS = 0 V - 4660 - Output Capacitance Coss VDS = 25 V - 460 - Reverse Transfer Capacitance Crss f = 1.0 MHz, see fig. 5 - 41 - - 5490 - Drain-Source On-State Resistance Forward Transconductance RDS(on) ID = 16 Ab VGS = 10 V Dynamic Output Capacitance Effective Output Capacitance Total Gate Charge Coss Coss eff. VGS = 0 V VDS = 1.0 V , f = 1.0 MHz VGS = 0 V VDS = 480 V , f = 1.0 MHz - 120 - VGS = 0 V VDS = 0 V to 480 V - 250 - - - 180 - - 56 Qg VGS = 10 V ID = 27 A, VDS = 480 V pF Gate-Source Charge Qgs Gate-Drain Charge Qgd - - 86 Turn-On Delay Time td(on) - 27 - - 110 - - 43 - - 38 - - - 27 - - 110 - - 1.5 - 620 920 ns - 11 16 µC - 36 53 A Rise Time Turn-Off Delay Time Fall Time tr td(off) see fig. 6 and 13b VDD = 300 V, ID = 27 A RG = 4.3 Ω, VGS = 10 V, see fig. 10b tf nC ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulsed Diode Forward Currenta ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Reverse Recovery Current Forward Turn-On Time IRRM ton MOSFET symbol showing the integral reverse p - n junction diode D A G S TJ = 25 °C, IS = 27 A, VGS = 0 Vb TJ = 25 °C, IF = 27 A, dI/dt = 100 A/µsb V Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDS. www.vishay.com 2 Document Number: 91219 S-Pending-Rev. B, 12-Jun-08 IRFP27N60K, SiHFP27N60K Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 1000 1000.00 VGS 15V 12V 10V 8.0V 7.0V 6.0V 5.5V BOTTOM 5.0V 100 10 ID, Drain-to-Source Current (Α ) ID, Drain-to-Source Current (A) TOP T J = 150°C 100.00 1 0.1 5.0V 0.01 10.00 1.00 T J = 25°C 0.10 VDS = 100V 20µs PULSE WIDTH 20µs PULSE WIDTH Tj = 25°C 0.01 0.001 0.1 1 10 5.0 100 9.0 11.0 13.0 15.0 VGS, Gate-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig. 1 - Typical Output Characteristics 100 7.0 Fig. 3 - Typical Transfer Characteristics 3.5 VGS 15V 12V 10V 8.0V 7.0V 6.0V 5.5V BOTTOM 5.0V I D = 28A 5.0V 1 0.1 20µs PULSE WIDTH Tj = 150°C 0.01 0.1 1 10 VDS, Drain-to-Source Voltage (V) Fig. 2 - Typical Output Characteristics Document Number: 91219 S-Pending-Rev. B, 12-Jun-08 100 2.5 (Normalized) 10 3.0 R DS(on) , Drain-to-Source On Resistance ID, Drain-to-Source Current (A) TOP 2.0 1.5 1.0 0.5 V GS = 10V 0.0 -60 -40 -20 0 20 40 60 TJ , Junction Temperature 80 100 120 140 160 ( ° C) Fig. 4 - Normalized On-Resistance vs. Temperature www.vishay.com 3 IRFP27N60K, SiHFP27N60K Vishay Siliconix 100000 Coss = Cds + Cgd 100 I SD , Reverse Drain Current (A) 10000 C, Capacitance(pF) 1000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Ciss 1000 Coss 100 Crss 10 T J= 150 ° C T J= 25 ° C 1 V GS = 0 V 10 1 10 100 0.1 1000 0.2 ID = 28A 0.8 1.1 1.4 V SD,Source-to-Drain Voltage (V) VDS , Drain-to-Source Voltage (V) Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage Fig. 7 - Typical Source-Drain Diode Forward Voltage 1000 VDS = 480V VDS = 300V VDS = 120V OPERATION IN THIS AREA LIMITED BY R DS(on) ID, Drain-to-Source Current (A) 12 0.5 10 VGS , Gate-to-Source Voltage (V) 100 7 5 2 10 100µsec 1msec 1 0.1 0 0 30 60 90 120 150 QG, Total Gate Charge (nC) Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage www.vishay.com 4 Tc = 25°C Tj = 150°C Single Pulse 10 10msec 100 1000 10000 VDS , Drain-toSource Voltage (V) Fig. 8 - Maximum Safe Operating Area Document Number: 91219 S-Pending-Rev. B, 12-Jun-08 IRFP27N60K, SiHFP27N60K Vishay Siliconix RD 30 VDS VGS 25 20 ID , Drain Current (A) D.U.T. RG + - VDD 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 15 Fig. 10a - Switching Time Test Circuit 10 VDS 90 % 5 0 25 50 75 100 TC , Case Temperature 125 150 10 % VGS ( ° C) td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature td(off) tf tr Fig. 10b - Switching Time Waveforms (Z thJC ) 1 D = 0.50 0.1 Thermal Response 0.20 0.10 0.05 P DM 0.01 SINGLE PULSE (THERMAL RESPONSE) 0.02 0.01 t1 t2 Notes: 1. Duty factor D = 2. Peak T 0.001 0.00001 0.0001 0.001 0.01 t1/ t 2 J = P DM x Z thJC +TC 0.1 1 t 1, Rectangular Pulse Duration (sec) Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case VDS tp 15 V L VDS D.U.T RG IAS 20 V tp Driver + A - VDD 0.01 Ω Fig. 12a - Unclamped Inductive Test Circuit Document Number: 91219 S-Pending-Rev. B, 12-Jun-08 A IAS Fig. 12b - Unclamped Inductive Waveforms www.vishay.com 5 IRFP27N60K, SiHFP27N60K Vishay Siliconix 950 ID 13A 18A 28A TOP EAS , Single Pulse Avalanche Energy (mJ) 760 BOTTOM 570 380 190 0 25 50 75 100 Starting Tj, Junction Temperature 125 150 ( ° C) Fig. 12c - Maximum Avalanche Energy vs. Drain Current Current regulator Same type as D.U.T. 50 kΩ QG VGS 12 V 0.2 µF 0.3 µF QGS QGD + D.U.T. VG - VDS VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform www.vishay.com 6 Fig. 13b - Gate Charge Test Circuit Document Number: 91219 S-Pending-Rev. B, 12-Jun-08 IRFP27N60K, SiHFP27N60K Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - • • • • RG dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage Body diode VDD forward drop Inductor curent Ripple ≤ 5% ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91219. Document Number: 91219 S-Pending-Rev. B, 12-Jun-08 www.vishay.com 7 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1
© Copyright 2025