2015-04-01 LightandMatter Reflection/Refraction/Polarization MD6305Laser‐TissueInteractions Class2 JaeGwan Kim jaekim@gist.ac.kr ,X2220 DepartmentofMedicalSystemEngineering Gwangju InstituteofSciencesandTechnology Copyright.Mostfigures/tables/textsinthislecturearefromthetextbook“Laser‐Tissue InteractionsbyMarkolf H.Niemz 2007”andthismaterialisonlyforthosewhotakethis classandcannotbedistributedtoanyonewithoutthepermissionfromthelecturer. LightandBulkMatter(tissue) • Inopaquemedia,therefractionishardtomeasure duetoabsorptionandscattering loss Iinc Transmittance(%)=Itrans/Iinc loss loss Itrans • Inlasersurgery,knowledgeofabsorbingand scatteringpropertiesofaselectedtissueisessential forthepurposeofpredictingsuccessfultreatment 1 2015-04-01 LightandBulkMatter(tissue) • Typesofinteractions – Reflection(Fresnel’slaw) 1 – Refraction(Snell’slaw) sin sin – Scattering,Diffraction – Absorption variationintransmission – Phaseshift – Emission LightandTurbidSample • Opticalpropertiesofturbidsample – – – – – – Refractiveindex:n Absorptioncoeff.:μa Scatteringcoeff.:μs Scatteringanisotropyfactor:g ReducedScatteringcoeff.:μs´= μs(1-g) Totalattenuationcoeff.:μt= μs+ μa • Optical mean free path of photons= 1/ μt – Albedo: a=μs/μt (to ascertain whether absorption or scattering is dominant in turbid media) – Transportcoeff.:μtr= μs(1-g) + μa – Diffusioncoeff.:1/(3μtr) 2 2015-04-01 Electric Field • Coulomb’slaw – Themagnitudeoftheelectrostaticforceofinteractionbetweentwo pointchargesisdirectlyproportionaltothescalarmultiplicationof themagnitudesofcharges andinverselyproportionaltothesquareof thedistancebetweenthem. – Theforceisalongthestraightlinejoiningthem.Ifthetwocharges havethesamesign,theelectrostaticforcebetweenthemisrepulsive; iftheyhavedifferentsign,theforcebetweenthemisattractive. Coulomb constant Refraction • Refraction isthechangeindirectionofawave due toachangeinitsspeed. • Thisismostcommonlyobservedwhenawave passesfromonemediumtoanotheratanyangle otherthan90° or0° Q. What is the index of this half circle glass? = 90 , 3 2015-04-01 Reflection • Reflection isthechangeindirectionofawavefront ataninterfacebetweentwodifferentmedia(nis different)sothatthewavefront returnsintothe mediumfromwhichitoriginated. • SpecularvsDiffuseReflection(roughness≳λ,tissue) Plane of incidence Reflection • Reflectivity: theratioofreflectedandincident electricfieldamplitudes • Reflectance: ratioofthecorrespondingintensities (actuallyitmeansenergywhichisreflectivity2) • Theelectrostaticfieldstoresenergy.Theenergy densityu (energyperunitvolume)isgivenby 1 2 :vacuum permittivity 4 2015-04-01 FresnelEquations • DeducedbyAugustin‐JeanFresnel,describethe behavioroflightwhenmovingbetweenmediaof differingrefractiveindices.Thereflectionoflight thattheequationspredictisknownasFresnel reflection. Fresnel’sEquations • Fresnel’sequationsdescribetherelationsfor reflectivity andrefraction • E,E’,E’’:amplitudeoftheelectricfieldvectorsof incident,reflected,andrefractedlight,respectively • s andp denoteperpendicularandparalleltothe planeofincidence – s:Germansenkrecht(perpendicular) 5 2015-04-01 Fresnel’sEquations • Question:isthefollowingequationcorrect? intensityoftherefracted+intensityofreflected beams=intensityofincidentbeam • Itisnotbecauseintensity=power/unitarea • Thecrosssectionofrefractedbeamisdifferentfrom thatofincidentandreflectedbeamsexceptat normalincidence • Onlythetotalenergyisconserved • Thereflectances inplaneare , TrigonometricConversion 6 2015-04-01 FresnelEquations • TheamplitudesofreflectioncoefficientR and transmissioncoefficientT are R = and wherer andt aretheratioofthereflected/transmittedwave’s complexelectricfieldamplitudetothatoftheincidentwave FresnelEquations • Reflectioncoefficient(Reflectance) – Ifincidentlightiss polarized, – Ifincidentlightisp polarized • Transmissioncoefficient Ts =1‐ Rs,Tp =1‐ Rp • Iftheincidentlightisunpolarized, R=(Rs +Rp)/2 7 2015-04-01 FresnelEquations • Forthenormalincidentcase, 0 4 1 whichshowstheconservationofenergy PolarizationofLight Mechanical wave simulation Polarization of light Polarization is something associated with the electrical field orientation of the light wave. 8 2015-04-01 PolarizationofLight • Polarizationoflightisdefinedintermsofthetrace patternoftheelectricfieldvectorasafunctionof time.Ittellsusinwhichdirectiontheelectricfield oscillates • Thetracepatternofelectricalfieldvectorinalight waveis… – Predictable: Fullypolarizedlight – Unpredictable: Unpolarized light – Partialpredicable: Partiallypolarizedlight FullyPolarizedLight • Lightwhichhasitselectricvectororientedinapredictablefashionwith respecttothepropagationdirection,isfullypolarized. Visible light: ν = (4.3~7.5)x1014Hz Three-dimensional representation of polarized light 9 2015-04-01 Unpolarized Light • Naturallyproducedlight– sunlight,lightfromalightbulb, firelight,lightfromfireflies– isunpolarized. • Unpolarized lightcanberepresentedasanelectricfieldthat frommomenttomomentoccupiesrandomorientationsin thexy‐plane y z x Linear polarized light LightasanElectromagneticWave • Electromagneticwavevariesinspaceandtime • Electricfieldcanbewrittenasa: z scalar E ( z, t ) A cos2 ( t ) A cos(kz t ) vector E ( z, t ) A cos(kz t ) δ: the phase constant , k: propagation constant, ω: angular wavenumber • Thedirectionoftheelectricfield vector(whichisnotthesameas thedirectionoflightpropagation!) iscalledthepolarizationdirection. 10 2015-04-01 PolarizationofMonochromaticPlaneWaves E ( z, t ) A cos(kz t ) ix Please remember: cos( x) Re[e ] E willlieinthe(x,y)plane ConsideraplaneEMwavepropagatinginthezdirection→ E ( z , t ) Re A e j (t kz ) wherethecomplexenvelope: Atz=constant,thecomponentsofthefieldwillvaryas: E x Ax cost E y Ay cos t where y x A E x xˆ E y yˆ Ax e j x x Ay e j y y LinearPolarizedLight 1. 0, In phase E x Ax cos t E y Ay cos(t ) E x Ax cos t E y Ay cos t Ey Ay Ax Ex Linear equation Ay y Ay y x x Ax 0 Ax 11 2015-04-01 CircularPolarizedLight 2. , 90 degree out of phase 2 E x Ax cos t E y Ay cos(t ) E x Ax cos t E y Ay sin t 2 2 Ey Ex 2 1 2 Ax Ay Standard elliptical equation For particular Ay case of y x x E E 2 Left hand polarization y x E E Ax A x E x EAy y y Ax A 2 Right hand polarization EllipticalPolarizedLight 3. General cases E x Ax cos t E y Ay cos(t ) 2 2 2Ex E y Ey Ex 2 cos sin 2 2 Ax Ay Ax Ay General elliptical equation Ay y Ay y Ay y Ay y x x x x Ax Ax Ax Ax 12 2015-04-01 Animated Demonstration LinearPolarizationin3DMovies Twosynchronizedprojectorsprojecttwo imagesonthescreen,eachwithadifferent polarization(theimagesareprojected throughlinearpolarizers) The glasses allow only one of the images into each eye. The two images are separated for each eye creating depth 13 2015-04-01 ImportanceofPolarization Polarizationplaysanimportantroleintheinteractionoflightwithmatter: Theamountoflightreflectedattheboundarybetweentwomaterialsdependson thepolarizationoftheincidentwave. Theamountoflightabsorbedbycertainmaterialsispolarizationdependent Lightscatteringfrommatterisgenerallypolarizationdependent Therefractiveindexofanisotropicmaterialsdependsonthepolarization Opticallyactivematerialshavethenaturalabilitytorotatethepolarizationplaneof linearlypolarizedlight. Thesepolarizationphenomenaareusedforbuildingimportantpolarizationdevices. PolarizingFilter • Apolarizingfiltercutsdownthereflections(top)andmadeit possibletoseethephotographerthroughtheglassatroughly Brewster'sangle althoughreflectionsoffthebackwindowof thecararenotcutbecausetheyareless‐stronglypolarized, accordingtotheFresnelequations 14 2015-04-01 svs ppolarization Plane of Incidence Reflected wave x k3 y θr θi x y n1 θt k2 y perpendicular polarization (or TE or s polarization, “s” easier to remember if we think of the arrow “slapping” the mirror) k1 mirror mirror x parallel polarization (or TM or p polarization, “p” easier to remember if we think of the arrow “poking” the mirror) n2 By solving a boundary value problem for the electromagnetic wave at the interface one can derive the Fresnel equations. This set of 4 equations gives the amounts of perpendicular and parallel polarized that reflected and transmitted at the interface. s vs ppolarization • x– perpendicular( ┴)componentofpolarization (transverseelectric(TE)orspolarization‐ from Germansenkrecht) • y– parallel(//)componentofpolarization (transversemagnetic(TM)orppolarization) 15 2015-04-01 Brewster’sAngle • Anangleofincidenceatwhich lightwithaparticular polarizationisperfectly transmittedthrougha transparentdielectricsurface, withnoreflection. • Whenunpolarized lightis incidentatthisangle,thelight thatisreflectedfromthesurface isthereforeperfectlypolarized polarizer Brewster’sAngle,CriticalAngle n1< n2 – external reflection (ex: reflection from air to glass) Brewster’s angle – the incidence angle at which the parallel polarized wave is not reflected B tan 1 n2 n1 n1> n2 – internal reflection (ex: reflection from glass to air) Critical angle – the incidence angle for which the refraction angle is 900 (for θ>θc all the incident light is totally reflected) n c sin 1 2 n1 16 2015-04-01 Brewster’sAngle • Airtowater(n=1.33) • Atnormalincidence, re lectance≠0 • Fromtheaboveeqs, itisnotclearwhatwill bethevaluesofRs orRp Brewster’sAngle • When issmall, ≅ Divide by and / " , " • Byinsertingn’=1.33, ≅ ≅ 2% • Thisiswhyweneedto protectoureyeswhenthe laserison 17 2015-04-01 Brewster,CriticalAngleApplic. Forθ>θc→totalinternalreflection →usedforlightpropagationinopticalfibers s‐polarized θB Partiallyp‐polarized A Brewster window transmits TM (parallel) polarized light with no reflection loss (used in lasers cavities) Polarizer-a device which converts an unpolarized beam into a beam with single polarization state If unpolarized light is incident on a surface at Brewster angle, the reflected light is linearly polarized with the electric vector perpendicular to the plane of incidence (the parallel component is not reflected) → polarization by selective reflection Polarizer • Linearpolarizer – Absorptivepolarizer:theunwanted polarizationstatesareabsorbedbythedevice • Crystals:tourmaline,herapathite • PVA plasticwithaniodinedopingisstretchedduringthe manufacturingprocess • Wire‐gridpolarizer: – Paralleltothewireisreflectedwhiletheperpendiculartothe wireistransmitted – Theseparationdistancebetweenthewiresmustbelessthan thewavelength oftheradiation,andthewirewidthshouldbe asmallfractionofthisdistance. – Thismeansthatwire‐gridpolarizersaregenerallyonlyused for microwaves andforfar‐ andmid‐infrared light. 18 2015-04-01 Polarizer • Linearpolarizer – Beam‐splittingpolarizer:theunpolarized beamissplit intotwobeamswithoppositepolarizationstates • Polarizationbyreflection • Birefringent polarizer • Thinfilmpolarizer:glasssubstratesonwhichaspecialoptical coatingisappliedcausinganinterferenceeffects Birefringence • Ananisotropic crystalexhibitsdifferentrefractive indicesfordifferentpolarizationcomponentsofthe light→whenlightrefractsatthesurfaceofan anisotropiccrystal(quartzorcalcite),thetwo polarizationsrefractsatdifferentangles,being spatiallyseparated(birefringence ordouble refraction). • Usually,twocementedprismsmadeofanisotropic (uniaxial)crystalsindifferentorientationsareused toobtainpolarizedfromunpolarized light. 19 2015-04-01 OpticalAxis • An opticalaxis isalinealongwhichthereissomedegreeof rotationalsymmetry inan opticalsystemsuchasa camera lens or microscope. • Foran opticalfiber,the opticalaxisisalongthe centerofthe fibercore, andisalsoknownasthe fiberaxis. OpticAxisofaCrystal • It isthedirectioninwhicha ray oftransmittedlight suffersno birefringence • Uniaxialcrystals:thehexagonal,tetragonal,and trigonal crystalsystemshaveoneopticaxis • Biaxialcrystals:orthorhombic,monoclinic,and triclinichavetwoopticaxes • Ifthelightbeamisnotparalleltotheopticaxis,then thebeamissplitintotworays(theordinaryandextr aordinary)whenpassingthroughthecrystal.These rayswillbemutuallyorthogonallypolarized. 20 2015-04-01 CrystalStructures Uniaxial crystals Biaxial crystals Ordinaryvs Extraordinary • Ifunpolarized lightentersthebirefringent material atsome angleofincidence, – thecomponentoftheincidentradiationwhosepolarizatio nisperpendiculartothecrystalaxis(ordinaryray)willbe refractedaccordingtothestandard lawofrefraction fora materialofrefractiveindex no, – theotherpolarizationcomponent,theso‐calledextraordin aryray willrefractatadifferentangledeterminedbythea ngleofincidence,theorientationoftheopticaxis,andthe birefringence 21 2015-04-01 BirefringentPolarizer Nicoleprism Glan‐Thomsonprism Glan‐Foucaultprism Glan‐Taylorprism BirefringentPolarizer Senarmont Prism WollastonPrism Crystalaxis Extraordinary ray ore‐ray 15~45o Rochon Prism Ordinaryray oro‐ray 22 2015-04-01 Malus’law • Whenaperfectpolarizerisplacedinapolarized beamoflight,theintensity,I,ofthelightthatpasses throughisgivenby WhereIo istheinitialintensity θi istheanglebetweenθ0andθ1 Polarizer • Circularpolarizer(polarizingfilter) – tocreatecircularlypolarizedlightoralternativelyto selectivelyabsorborpassclockwiseandcounter‐ clockwisecircularlypolarizedlight – Polarizingfiltersinphotography – 3DGlasses 23 2015-04-01 WaveRatarder (Waveplate) A typical wave plate is made of anisotropic materials (birefringent crystal). There is a phase delay between the two polarization components which “see” different refractive indices of the anisotropic material The phase difference is given by: 1 2 2 (n2 n1 ) L where L is the length of the wave plate; n1, n2-the refractive indices corresponding to the two polarization components 2 → a half wavelength, Half wave plate → a quarter wavelength, Quarter wave plate Wave plate (retarder) HalfWavePlate E x Ax cos t E y Ay cos(t origin ) For linear polarized light (δorigin=0 or π), after passing a half wave plate: total origin 0( or ) ( or 0) http://www.altechna.com/product_details.php?id=877 linear polarization The light remains linear polarized, but the polarization plane will be rotated at 2θ. The polarization plane can be rotated by different angles if the half wave plate is rotated 24 2015-04-01 HalfWavePlate When do we need to use a half wave plate? -in an experimental set-up when the plane of polarization of a laser beam needs to be rotated - when the laser power needs to be attenuated, a wave plate and a polarizer can be used for this purpose 25
© Copyright 2025