ChemicalGeology,45 (1984) 33-51 ElsevierSciencePublishersB.V., Amsterdam- Printed in The Netherlands Bg COMPOSITIONOF MINERAL FRAC"TIONSOF THE NARBADA AND TAPTI ESTUARINE PARTICLES AND THE ADJACEIT ARABIAN SEA SEDIMENTSOFF WESTERNINDIA M. BASKARAN, M.M. SARIN and B.L.K. SOMAYAJULU PhysicalResearchLaboratory,Ahmedabad380 009 (India) (ReceivedMarch 15, 1983;revisedand acceptedOctober26, 1983) ABSTRACT Baskaran,M., Sarin, M.M. and Somayajulu,B.L.K., 1984. Compoeition.of-mineralfractions of the Narbadaand Tapti estuarineparticlesand the adjacentArabian Sea sed' iments off westernIndia. Chem.Geol.,45: 33-51. Thirty suspendedand bottom sediment samplesfrom the Narbada and Tapti river eetuarinesystemsof western India were separatedinto magnetic, clay and silt--and fractions, the Al, Fe, Mn, ZnrCr, Co, Ni and Cu concentrationsof which have been determined by atomic absorption spectrophotometry. On an average,the silt-*and fraction accountsfor >90Voof the suspendedmatter and bottom sediments.Of the rest, clays are more abundant than the magnetic fraction. For all fractions there are no major differences, in the region of inveetigation, in mineralogy between the estuarinesuspendedand the bottom sediments. The magnetic fraction is enriched in all metals (except Al) by a factor of L.2-4 as compared to the other two fractiong. The claye, in turn, arc enriched in all metals by a factor of 1.4 t 0.14 as compared to the siltaand. The metal/Al ratios in the clay aawell as in the silt-and fractions do not strow any variations beyond t 26Vobetween the freshwater end-memberof the estuariesand the coastalArabian Sea,thus indicating that the effect of eetuarine processeson the inorganic solids are within thig limit. In the magnetic fraction the metal/Al ratios vary by as much as an order of magnitude,whereas the correspondingmetal/Fe ratios do not vary by more than a factor of 2. The clay and gilt-and fractions of sedimentsfrom the open shelf and slope regionsof the Arabian Sea are enriched in Ni and Zn and depleted in Mn by a factor of 2 as compared to the estuarinesuspendedand bottom sediments.Theseenrichments are attributed to thc reducing nature of the open marine environment. The inter-elemental conelations in the gilt-and fractions are good, the correlation co' efficients (for 28 observations)ranging from 0.60 to 0.96 (the highest value ie for FeAl). The suspendedfluxes of metale from the Narbada and Tapti Rivers to the adiacent shelf and to the deep sea (via clays) are calculated. On average-6Vo of. the total flur to the ghelf region reachesthe deep sea. INTRODUCTION One of the major and better characterisedinputs of material to the ocean is via rivers and streams.The river- and stream-bornesoluble and suspended loads get affected in estuarieswhere there is continuous mixing between fresh water and seawater(Turekian, 1971, L977; Fukai et al.' 1973; Krishnaswami,1976; Sholkovitz, L976; Evans et al., L977) by processes 34 such as flocculation, adsorption-desorption,recycling through biological processes,etc. The estuarineprocesses thus modify the influx of continental (Kharkar et al., 1968; Martin et al., 1971, t9731, materialsto the ocean Windom et al., L971; Boyle et al., t974; Borole et al., L977,1982a,b; Borole, 1980; Carpenterand Hayes,1980; Tlefry and Presley,L982;Ray et al.,1984). Borole et al. (7977,1982b) and Trefry (1977) studiedthe total suspended (U.S.A.)riverestuarine phasesof the Narbada,Tapti (India) and Mississippi systemsrespectively,with a view to understandingthe fluvial transport of someelementsinto the ocean.Tessieret al. (1980) attemptedto study the speciation of some trace metals in the Yamaska and St. Frangoisrivers (Canada)by subjectingthe riverine solidsto sequentialleachingprocedures. Suspendedmaterial/bottom sedimentare compositesof severalminerals.We thought it worthwhile to separatethe suspendedmaterial/sedimentsinto (which are denoted as mineral fractions hencethree mineral assemblages forth), viz. magnetic,clay and silt-sand, and to study the distribution of some major and sometrace metalsin thesefractions. As clays are the ultimate river- (and stream-) borne input of terrestrial material to the deep ocean, such a study would allow an estimationto be made of the riverine fluxes of metalsto the deep sea.We report our studieson Al, Fe, Mn, Zn, Cr, Co, Ni and Cu in the three fractions of the suspendedmatter/bottom sedimentsof the Narbadaand Tapti river-estuarinesystemsof westernIndia and of the adjacentArabian Seasediments. EXPERIMENTAL The Narbada and Tapti are the two major rivers (both perennial) on the west coast of India and the secondand third largestriversof the Indian subcontinent draining an areaof 0.9.10s and 0.65'10s km2, respectively,into the ArabianSea(Fig. L). Togetherthey dischargeannually0.6'10141water, sediment,into the ArabianSea;this is associated with -0.6.1014g suspended 257oand 60Vo,respectively,of the annualwater and suspendeddischargesof the largestriver of India, the Indus (Milliman and Meade, 1983). In their initial stagesthey flow through the basalticterrain of the DeccanTraps,and - in'the lower reaches- through recentalluvialtracts (Borole, 1980). The South-westmonsoon,usually occurringbetweenmidJune and mid-September, accounts for 94Voand 77% of. the annual dischargeof the Narbada (Rao,19?5).Both (4.07.10131) respectively and of the Tapti (1.8.10131), -30 estuariesare km long and are tidal. The waters at Broach and Surat form the freshwaterend membersof the Narbadaand Tapti estuaries,respectively (Fig. 1). Sampling Samplingof estuarinewaters was usually done on board country boats and motor launches,and eachset of sampleswas collectedin one tidal cycle. 35 . t465 69'E .1471 700E Fig. 1. Map of the region of study, indicating the locations of the coastal and open Ara' km bian Sea sediments. TLe River Narbada has no dam, whereas the Tapti has a dam 200 upstream of Surat. Broach and Surat represent the freshwater end'members of the Narba' da and Tapti estuariee,respectively. One-litrewater sampleswereusedfor determiningthe suspendedmatter con' centrations. Sinceboth rivers are muddy, especiatlythe Narbadawhich has no dam, amplesuspendedmatter could be collectedfrom the 20'l water sam' (Borole, 1980). Suspendedmatter ples collected for uranium measurements samples(usedfor this study) wereselectedso as to coverthe entire estuarine region oi noth rivers.Estuarinesedimentswere collected from river banks; gt".rity cores and grab samplesfrom the near-coastaland open Arabian Sea Goa. ur."r ifig. 1) wereprovidedby the National Institute of Oceano$raPhY, Mineral fractions\ryereseparatedasfollows. A known weight of the ovendried (110'C) sample was dispersedin a Teflon@beakerand stirred with a Teflon@-encasedmagneticbar for 5 min.; the bar was removedand the magneticparticleswere then transferredinto another container.The procedurewas repeateduntil no particleswere seen on the bar magnet.The non-magneticmaterial was then separatedinto clay 36 (<4 pm) and silt-and fractions by conventional settling methods (Galehouse,1971). About 30 mg of eachfraction wasdepositedon a glassslide and subjected to X-ray diffraction using a Philips@(Eindhoven,The Netherlands)I 730 X' ray diffractometer (Hutchison, 1974). For clays and silt-sand' Cu-K" Nifiltered radiation were used,whereasfor the magneticfraction, Fe'K" Mnfiltered radiation were used. In order to confirm the presenceof smectite' the clay mineral fractionswere X-rayedbefore and after glycolation. Determinationof chemicalcomposition Known amounts (<0.5 g) of ovendried mineral fractions were brought into solution in L M HCI after repeatedtreatmentswith HF, HCIO4,HNO3 and HCl. This residue-freesolution wasdiluted to 50 ml and wasusedfor the determinationof the concentrationsof Al, Fe, Mn, Zn, Ct, Co, Ni and Cu by atomic absorption spectrophotometry, following standard procedures. U.S.G.S.rock standardsand blanks were also run along with the samples (Sarinet al., L979;Boroleet al., 1982). RESULTS In Table I are gtven the chlorinity of water (measuredby AgNO3titra' tion), the particulate matter concentrations(wherevermeasured)and the concentrationsof the three mineralfractions.The total Fe and Al concentra' tions of the suspendedmatter/sedimentsalongwith the fractional concentrations of the sameare also gtyer in Table I. Similar data are grvenin Table II for Mn, Zn and Cr, and for NiSo and Cu in Table III. The reported concentrations are accwate to ! \Vo for all elements,except fot Zn which is accurate to t 6Vo. DISCUSSION The particulate concentrationsof the Narbadaand Tapti estuarinewaters are in the range of. 26.74720 and 19.7-691 mg fl, respectively,with weighted mean valuesof 1154 and 445 mg f r, respectively(Borole et al., 1982b); the highestvaluesfor both estuariesoccurring in the monsoonseason (midJune to mid-september).The relatively higher particulate concentrations of the Narbadawaterscomparedto thoseof Tapti can be explained as due to the damming of the latter. The general high concentrations of suspendedmatter in these estuarinewaters as comparedto those of the east-coastrivers, viz. Mahanadi,Godavari and Krishna (Borole et al., L982b; Sarin et al., 1983; Ray et al., 1984), is most likely due to the tidal range (5-7 m) at the mouths of theserivers. 37 u ?t : o l q q q e o l \ o l q u ? a qo:c!qu? cqnq6:\c!q qqno?1\ U)hB cD a- c\i.'lr0coo (D O) 6) cO cO@ ,. bs d F !,6,i doi >t F O FO<ic)C{O iFl oo6|!.r0 o) O) Or o) €O d!o)dc-tNNH(0 o| cO Or @ Ol g) ('| ca(OF- rOOr+OC{O@o) F- di <t,.i q -i o?H (QC€g)roc{{irroo ilF0? o)F C- Ol d) F o) ro O) <t: d) O, F tr.. { ci cd F F c.i j c" ddF rOoicrtHO)dirO(O -i ci ci'j,.i d d d <, d r.i 'rj.r .i @ O rO rO (0<€ O ro $ d rrOOO H g\l H H 6l ol Ng\| C! { d E: qt 3O - B BE "8 6 c (, c >E I ar E <, o a t o t\ 3 3 E <{ rO cO 3s) d iOdH F N iol q ol q qnol H !.CD 616ld c t(o: q n'1 (0 F- (o (o ts F(o t- FF Ol ro !r (o !@ @ @ @ ts- (o O O O ('| Ol O i o: co or @ o) F- F F q u ? n o ? n u ?q 6 ? r : o l q q l q c ! 6 : , q 9 q (o F 3 cl O O id O F (g (D Fl d c\Oro-cO$dtl c.i ( o d o ln c! ol {: q n q q o F € F- (o co (0 ro to r ololc!nqn q'qqc'?.1 o?\nq.'?9olc! O) rO @ cO otol co co co @ @ao 6| $ O) @ (o @ N r{ t{r O: Hi rOH o)t- (O i ro d q qnq cO $$ r0 FF- c o o Eo g c c E d to Ol Fl CA { 1q: { F- ro ot c.l 60 € {. qolu?F?'qqo?\q F- <r o| tO ro Ctl cr) c{ t{ tO (o (D @ F g) tl g) o) g) (D q 9qq qq€!cogu?\o?q €.lN @ rO (o H $ 6| 6lN O N F { (O F rO 6. -Z' o o ?I t : q o l t { : q n q (o (€ aO F (O N F F ro i io F 3 rgCO l- qn Ol 6t r{ i n o:ol c!u?olq ol i{ Cl d 60 d d F rO O) NO:t6 < HCO F mcacad{6t|:6l::!:=:= o H N E t r E t r C A a, & € o otg) ts-F O O (a (o to{ t'- to t- F. Ot i. F F @ € F t- cO (o(o O t- b- (o co lo @|oqr@|oOrcOO'{O)cA€O tfFiHt(l!-rlO6|HSGa F o F '6 g Ei 6 , 0 o c l: A g B8 cqaqqn 1q\qu? 6t Fr!l r0@o d H d(o(o Or(l|g)cOAo) OrOlOrdr@ c qqqu?c!u?u?\c'q1 1qo:,q\c\qqq od)co 30H<r€{ O:Orq:cOgr('r€F ro€ 6 ca@ co@|I)0roc\|$t! t- OF @OrolcO(Drtgro)(DO) o: q a I g ol c! q (o€FiF <? n6! q 6! q q c! e !q 1 n 6! {, <, c o €l?a q q olq q d?o?q 1 ,.$ a t a o o ll 6 6 a 6 o o 0 Ci E o c () t(t o O. E r: 9l e c r-(oloar)o o c f : r >t : u c g q q q 1 n o? q q q 1 n i N N d N N O H c O G a g ) o o o F d i . e A)a n a .: o! oCq c? e N H O O O F r O d t . @ . .{ Fcl o . ' F' : CdO 5- $ e F' ' : e| rr| r| d E ' d E ' d It t F{(oi qc\ c g t @ d do ro dgfl@ol(or4t|oi.F{ rc) C{H tl = 9 I c E o? d?<i \ = ol \ 4 o! = = = 3e g 6 a l o ' { O t r O O O O ! a C I | | | | | | | | I | | | c B! : . q EE (,I L r\ E! .g oi .6F{ g H(0(0 E r e i|oao H EE fl* t g r l L qnc!16!nnii 0 h @(0caF{coF r{ o E > r frl F c a o u OOO tl@Oa)6r F { d H OO('| 1 i o?q46!c O c-l{F q (O OO(o d d !:1111a11!:1114 o) gr(,) (D('|OI(')OICt:g)(t)(')Ol H r < H F l d r { r { H H d d F i T$E 6 E o Er:: 5:; : : i h 5 : l : i!ol i i l l S g i i 5 * x 5 s E 5F$E ataa ,ori:{x\i"ENys.+l .i i**$**cr R: l Q t r l t r lt r t r ! e t r c l t r t r l t r d , o : d d a : o . o . a : ' i ZZZZZZZZZZZ E E r Et r H F , t E O ( -.:oo HPE sE C) 38 C': AQ a:- | o0$@ r o( .o009d!d dO<rra)3(gcA@O)C\t6t O ) O ) O ) @ @ @ o|@ AOr @ (0F-6lc\ioF-co(ocoN i H i d o) i ca d co F- $ 6, cO O, @ o) F- CO F- oq,q a ol \ a q a?o?6i a \ q o: (0 o) ro H F- c: ro co co 9 ro co @ 6l rO @ C- F- O) O) F- O) Ol c€ (o o) o) Ol q a oqo? e-qq a o? ,q 6l ogo?,q q oi oq q n \ \ oqq (0 ro <r H |o e10?1qqqo?qq\ .. bR q,q q q q ol \ a H lo o) co ro co + ro H d 6l 0 n' <' { rOCt) 6l N ot c'l d) <' (') Nrl qt € ol9\qu?a >8 (OH rO@rOO)cO 6@OO) @ co H o c.rH = o o (o(o $ d c \q\6! i c ! C \ F r $ c O = c o { $ r O q oq\gq F a:- qt q a 6 o F () c q c a o q "8 >g ts c"j cd cd€<,,rj,o co F F: F c.. F O H s- o aoo ro ococo r- F F(6 d) @ @ (O O) s\O d.ri;: {oi;; ;;; FF 5 N * tj -ro U d ; 5 { o c'- { i o (O d d @ F- O: (O O' o) F- o) c.l H 6l o) i i oqo? qnn'q O d, H CO O) $ ro @ o d F F Fi |o rO F{ r" ol !Q o r.- coto 4 c!t: !: to (^o to r t: O O F C- O CD co r" t: (o t: @or c4't'(o co o) o)(D rQ 'r 0Q Ot'-cO{ i q ' i e " i s ! d < t , ' j c dF . - i ' . . di < i c ' i { ' j d d i c . i( q €N |oFr d C'l Ni'{ 'l r{d i ai rri rri o ocoo a::6 ir d. - Jc 'i i -d d o rO C'l cO \f q1qq6lce,4 1ne ; : N (g cD d o H <. tg o, \ \ 1 : 1 1 1 3 9 9 e \ ca c o l n(o F(o?gn o ?. . d' 1? ' r ?1 e c! F d Ft o: g) (o (o o c..r !.c) ! : g \ o ? ' q o ? a o l\ q \ U) FQ ts o 1() (O F I 6 d o H d d d i d o?1 c'?n qq aa rF-(orr(oold:dF-O? o)O)6OrO@c.lOOro)d i iil (Dg\rO r =l: = crl i H a NEE c t r c g E t r coor o o o o d d F i d F l d F l d qolnd?1-1 n! -t ' . c- ' < r F c \ c \ t t o ood't <o I ; o co \ i o a o q q ? q2 al r'+ \ 9( gq o ? - n ! 1 - c: o9E ro 3:: co 3 d ts(o E i o s) F € I o F o F t H H i d d i H 6 ' l F l r l tr @El === C tr C C (gF-FlO 'iO t" qi .9 t'j t9 q A co gi d<j 6l F o !' F F (o 16 <r) (D F l t ' - i 6 q d ?q \ q tu 38 1\ o ?q 1 \ o ?q 9 q \:!e o; d F ..; oioi cti o rot. or E (o I6? ogor-iN oo o o oFcor" 6 A ; o a t c d c i c o- - o o F I "?1'qc-{o?1 I 9 c' D?r o a r o'6:t r"' iC ? i !! d) $ < rI:co c{ 9 9 ( o ! - F ' c o o ) c o t " ( Do t l o o c D o : o q a q () ,, Be M ? , \r e? c ' ? d ?n n : q a \ (odrci d c- <| ctic; d cd F d ?9 e ? 9 ! l 9 q (a o)calo i<'o)t" / ; dd '{ u ?c ! ? c ! \ : l q \1ol 6 i d {' roo otf 6lH N 3 \e 9oc ro c! lo ro <l 'i lo c ! G q o 6 >g o tr F I o l6 l Y q o l d ? 6 ! o ? { e o ? n : o q q ' q c \ 9 ? d F F <, d d c'i F cdoi o < co c.r s\ - : : . qn'q_q_ J q C -\ N = (o c-r* * E E = E E : : .lQ I d\9a c.to:ro,{@oo)(9 F-o(c| r! 6 6ito rori:o o Jo toroorc].ll A+d;i6;t 5- d 6 a i5- 6- ;i 6- a; ci 6 q -l n -f n @ o- o. o)t"d Qsrl@o)F'o) F coroFr 9 q .J' Fl - t o o o c ' l c o r o d o c o t o ( g s ) o- t- or o- 6l 'rJ o. 3 !o o) rr c\t <' c! J J r - r ; ' r H r l d d d d d r l F l d tl F m 4 E C at c N A t) I o D! 6t o fr: F l € r ' o H >l It) riZ EF) ro s - o---. ^^^n !c "$q$S ; E I i $ l I l I l n i $ i 3 g ? 3 i n : R i v B R BEsB B n sI 222222222223FHFflflFF it d li e 3x : : 36??ir fr. 39 B8 ,.F G >8 (gc-F-F@!. 6 cO cO F- F-F g O)c')d)(o @ @ @ cO F qqd? n d?eq1 q qqqu? q qn 1q qol nol FO lo O)OO)(OcO O) @ @ @ cO F (O (O g i6ro)dO { tO F- C- F @ O) F d dlo d) @o F- cococa(€ rl (oq) o O<rcO(€@ co 6@oi F d rOOl(ntO(gD-dot c\(€do c\to 3<t N H F I ri d ir 6r FF) rr o <r d clq oq qo? \ol"l,q 6.1<. F F- u? cato o: to @ { o o n F- ol o) g) co ro oco cl 6.1co d co N l'- co c\ co' dH d(l)(o (0 6l cQ lo (') ro (o ca (l) aq \ \qq H @o) c.toro<. ro @(0i. ddd loO)rrd)CO@ (a roco <,(0D- Fo a oi o (go + c.t ot { (€i. d d 38 (t tr "E q q gqol d d d d d d d i <. O Cl C-l tO Or Fr o) $ dH (0ro c.-c{@N ro rrrooo - cooocoF-co co@coorco 6HOCO{6.1 g: @ @ rt{.cO (0@ i r{.o @o) (o (rl N dH H (n@;COlI)C-O6-lc-<lrO a 6 F qJ o q >8 F 6t Hro {co ri| ooo(oo6l{ ri i(n ot 6lC\ t'- { cO c) (o c-o ro H d Old o)!.tolo <. c€3F-@ C\ ClHi dt !' 61 O F' cO O) Or O) O) i @ No ro c?t0F(o <l'$o) N d d(OrO ttc/i d=(€== rr c\ca N= H c l C C F o) d ol 6l == E E C t r - t l H H d i d d d i cO H Ol q\ rO 3 (gO €coll)oo <.Nrl €o@@t'-co@@F- F- 3O)cOOl O: d O CD @ (o { <' (o 6{ro o: rota.(06!coo6/rc.loo?o ro F-F ts-olcot" o:(')!'co €ooq) 6.r (o !.tri.@c'l o roSc'-t96l!i t- {OOrF-(g F- H O) (O Or C€rgFd Fi Nr{ (ob' o) (os\c{a(o O 6 { t . - r O ( o o ) C . -! t totsd C\ r{ 6.1 cO .ri C\ o) F-q{OcO $= = 6l O loca.={ = $:= d 6I tr g C C tr d)(oiirot.o(oo:co@t- t-r(.t.-FtO:r+O@ 3 |o <. tn O c{ d rtr{ Ntl6€O|orO(O6d{.CQ dl o)F-NNOo)cOg:orF <.ci! ci tn $64 3 ol C\ oa crl t{t O) F- rr (O €O { i r{ cO r{ F- lO 6.l (o |o t{. s) !l Cr? Cr: Cr! t€ i. c\ c'l tl € F{ sOOlrrO NOcA(o(groo|OrcOcOO N it tO (g rOC-O!O (AOF.€O@cON N (DcOOI cO€ cO@r' O F@l"F'6!!t rO C\t€O:OloOI @d)lr'co(0F rg rtc, (c)(cl tl j.r N <'d: r{ do) OO cO tl gQ i C\t C€ r{ d Cl C- { F c- (g d! H Fl !: t: tr tr $ d 6l O @ t{ a It) a 6 EI o E q) q @ r. o - bl @ D-oa3C€ i(O rr6O O cog)g)cO q'1 6l q I q q C c'?q q ro r- co!tOO HHd f- cOtococ\t H n o! a I d?a n'q tilO:cO loiriri6l F{r-{ r<C-l QA6!tr! $t49ql F'OrF)o) O $cO tO rOF Or o)O) c! q u?u?o?q q n q 1'q q q 6! (') $O(od)tlO ti NFIFI |o ri |l:rlcDF(o c.|N c\l a tl (h 6 F ql a o c >8 a c c z c o = q rocoroocDoN6lrlod Fi oi cri r cn cd'< oa $ |o { ro(o o: F-o)co N Fi :: O t: O: (o ro E C @cac'-co rO (n c{ ot !: = = := t F r F i C I C g C r O t t I U) l: :l !: C C E E ;ql I tl 6 ! o t c ' ?e q , q 1 c ! o ? d l , r ? o qc ! n : q ' q ' 4 q q (oFo) c{c-rootto@tO(o(orO ro or(o6aca F. rOrO(or0 ro6{o:NN o F- (o(o(ot-(o(o(o ,q q \ol 4'-{q \ol qn !t rolo0coo{, t-qlc{c{ F- rt F-F-t-t<.r0NiF.rO q n a rr r- $ ti !. (O 'd o c bo (t it) E tl H r-r l H . : 6 z o Y l/ F F r Z o trl 6 !c ' r e i crt T T \To r $o : $ ^ leYaePQI .^ e-$$$€ I tr 3 : $ :s: E sEgEnE -t B l i i i * * i;i i*i* 3 i? Fi .iFi Fi l{ Fi S n +r O\, R 6? < < < dSS:: zZZZZZZZZZZ { E { F .r F g llr 40 Concentrationof different mineralfractions In both the estuarinesuspendedmatter and the sediments,the silt-sand fraction (weight percent) is the dominating component (Fig. 2), ranging from 42.7Voto 98.8Vowith a geometric-meanconcentration of 88Vo.The clay fraction amounts to 0.7-56.8Vo(geometricmean = 6.7Vo)and the mag' (geometricmean = L.1Vo).The calto 1,.6Vo netic fraction rangesfrom O.LVo careousgravity cores,ARB-46 to ARB-65H, containedno magneticfraction at all (Table I). There are no spectacularvariationsin the concentrationsof especiallyfor that of silt-sand - from one end of the mineral assemblages, the estuaryto the other - aswell as for the shelf and slopesediments(Table I). The only significantobservationis that at any givenlocation the suspended matter has lessmagneticfraction than the underlyingsediments(samples NB5-I, NB5-5, NM-20; and NB7-1,N87-2and NBD; TableI) which is to be expected as the heavy magneticmineralssettle rapidly. Also, there appears to be an inversecorrelation betweenthe clay and magneticfractional concentrations (Table I). It is also clear from the data that clay is irregularly distributed in the coastal sediments,the highest concentrationsoccurring only at Ghoga on the Gulf of Cambaycoast,oppositethe mouth of Narbada (Fig. 1). The relativelyheavierfractionsare depositedin the Gulf of Cambay adjacentto the river mouths. 20 S A N D+ S I L T o lrJ J (L a to t! o (r Ld d! 3 J z PERCENT Fig. 2, Histogtams of the percentages of magnetic, clay and silt-sand fractions in all sam' ples. 4L Mineralogy The mineralogicalstudieshave been only qualitative, sincethe main aim has beento find out whetherany major differencesexist betweenthe Narbada and the Tapti estuarinesuspendedparticlesand the shelf and slopesediments of the Arabian Sea.The magneticfraction consistsessentiallyof three minerals: maghaemite(by far the most abundant) with traces of ilmenite and hematite. In the clays, smectiteis the most abundant,whereasillite, kaolinite and quartz are present in traces.In the silt-sand fraction, quartz is the most abundant mineral. Tracesof plagioclase-feldsparcalcite and mica are encounteredin most of the samples.In the four gtavity cores (ARB series; Table I) from the shelf and sloperegions,there is no magneticfraction. The silt--and fraction further consistsof 31-82.5% CaCOs(90Vocalcite and L0% amgoniteon an average;Borole et al., 1982b). In general,it can be said that there are no major differences in the mineralogy of the magnetic fraction separatedfrom the estuarinesuspendedmatter and from the estuarine and nearcoastal sediments.The sameobservationalso holds in the caseof clay and silt-and fractions. Metal concentrations Our data (Tables I-III) show that the silt--and fraction, which is the principal component of the suspendedmatter/sediments,controls the metal concentrationsof the latter. It is, however,important to determinethe composition of the three different fractions to seehow these differ from each other and to what extent they influence the total suspendedmatter concentrations of the metals reported in this study. In Table IV are presentedthe mean concentrations of the eight metals, along with the rangefor each fraction. It is clearly seenthat the magneticfraction is enrichedin Fe, Mn, Zn, Cr, Ni, Co and Cu, comparedto the other two. Transition elementsdo genefally follow Fe geochemistry, which is by far the most abundant (mean = TABLE IV Composition of mineral fractions Element a Al (vo) Fe (Vol Mn (ppm) Zn (ppm) Cr (ppm) Ni (ppm) Co (ppm) Cu (ppm) 4.6 22.2 3,260 619 141 83.5 L27 399 Silt-eand Clay Magnetic 3.8--6.1 L2.L-29.9 2,093-4,826 369-898 31.5-397 31.5-128 53.3-326 230-595 R 7.6 8.4 1,103 L42 L20 69.7 48.5 L62 C = concentration(geometricmean);R = range. 6.1-8.6 7.0-10.4 699-1,584 106-836 7L.l-L75 26.9-L49 83.4-tL7 104-266 6.1 6.1 849 86.2 91 56.6 30.9 98 1.3-11.8 1.2-11.6 193-1,164 45.4-L99 28.9-L26 t4.8-76.7 9.9-42.8 27.7-tg3 42 22Vo)element in the magneticfraction. In contrast, Al hasthe lowest abunin the magneticfraction (TableIV). Al is mostly present dance(mean=4.6Vo) in the form of alumino-silicateswhich dominate the clay and silt-sand assemblages.All analysedmetals are enrichedin the clay relative to the siltsand fraction by a factor of.t.42 t 0.18, and this is most probably due to the high quartz content of the latter (quartz is depleted in most metals). Though the suspendedmatter has lessmagneticfraction comparedto the underlying sediment at the samelocation, the overall composition of these two materialsis about the same.This is becausein both suspendedmatter and sediments,the magneticfraction (as well as the clay) is a minor component (the entire composition of the estuarineand near-coastalsolid material is controlled by the silt-and fraction). Comp ositionaluariations in estuarinesuspendedmatter/ sediments The suspendedmatter/sedimentconcentrationsof Al, Fe, Mn, Zn, Cr, Co, Ni and Cu in the estuariesshow largescattering,whereasthe metal/Al ratios show a much smaler one (t 25Voover the mean). Now that the different fractions of thesematerialshavebeenanalysed,we tried to find out whether the metal/Al ratios in the three fractions behavedlike thosein the total sus' pended matter. For clays and silt--and, Al would be a carrier phase.The variationsof the metal/Al weight ratios in the estuarineregion,as well as in the adjacentcoastaland open Arabian Seasediments,are shownin Figs. 36. In the freshwaterend-memberregion [referenceis made to Burton and Liss (19?6) for detailson the end-memberconceptin estuarieslthe metal/Al ratios of the clay and silt--rand fractions cluster rather closely, whereasin the magneticfraction the ratios show a largevariation. Fe/Al and Mn/Al ratios The Fe/Al ratios of both silt-sand and clay fractions are almostidentical, and there is no significantvariation in this ratio (1.0) as a function of chlorinity in the estuarineregion nor in the near-coastalregions(Fig. 3). However, in open Arabian Sea sedimentsthere is a slight decreasein the ratio, especiallyin that of the silt-and fraction, by - 25Vo.There is a tremendous scatterin the Fe/Al ratio of the magneticfraction. The Mn/Al ratio is also shown in Fig. 3. Heretoo the ratio remainsabout the same for both clay and sand-ilt fractions, and (there is no significant changein the ratio of L.5.10-2) in the estuarineand the near-coastalregions. In the open Arabian Sea sedimentsthere is depletion by a factor of -2, which can be attributed to the reducingnature of the environment(Deuser, 7975; Borole et al., 1982b).In suchareas,Mn can diffuse out of the sediments in the form of Mn2*. The Mn/Al ratios in the magneticfraction show a tremendousvariation. 43 ^ CLAY . MAGNETIC r S I L T+ S A N D l.tt It.o n (\I I ro 7 o ! x 1 .5 oo I I = o r! I I ' 6 t A ir l . ^ l -oaooo;a68oo l Si &, I t --lp 6 o.5 o.5 8.O I 6.O oo 4.O I a A { i 0 t .& o0gggSoAooo I 3 eo ?O C H L O R I N I T (Yg / t l NEAR COASTAL Fig. 3. Mn/Al and Fe/Al variations in the Narbada and Tapti estuarine particles (solid symbols) and sediments (open syrnbols). Data points in the near-coastal and open-sea regions are offset for the sake of clarity. Ni/Al and Zn/Al ratios Thesevariationsare shown in Fig. 4. Both Ni/Al and ZnlAl ratios in the clays and silt-and fractions are about the same,iz, Ni/Al = 9'10-a and ZnlAl = 1.5.10-3. From the freshwaterend-memberregionsto the nearcoastalregions,theseratios in the clay and silt-sand fractions do not shoiv variations beyond t 25Vo.Only in the open Arabian Seasedimentsis there an increaseby a factor of 2 in both these ratios. Here againthe reducing nature of the environmentcan account for this increase.Ni and Zn can precipitate from the overlying watersas sulphides,and evidenceexists for sulphatereduction in the generalareafrom which the ARB coreswere collected (Deuser,L975; Borole et al., 1982b).Therearetremendousvariationsin the Ni/Rt and ZnlAl ratios of the magneticfraction. Cu/Al and Co/Al ratios These variations are shown in Fig. 5. The Cu/Al ratios in the clays are slightly higher than the correspondingones in the silt-*and fraction (1.8. 10-3) in the estuarineregions.This ratio also showsa slight decreasingtrend between the freshwaterregion and the near-coastaland open Arabian Sea. matter from The Cu/Al data of Boroleet al. (1982b)for the total suspended 44 r MAGNETIC O S I L T +S A N O ^ CLAY ro ' 9 2 x = l 2 *lo troo o a rt I go 5 9 e .o A ! o ( s .o g N - 2 . a : l a o 8 a oo I oSooooSr"o COASTAL C H L O R I N I T (Yg / l ) Fig. 4. Ni/Al and,Znly'{ variations in the Narbada and Tapti estuarine particles (eolid symbots) and sediments (open symbols\ in the three fractions. Data points in the near' coastaland open*ea regionsare offset for the sakeof clarity. these estuarineregions did not show any such trend. As usual,the Cu/Al variesby a factor of 3-4 in the magneticfraction. The Co/Al ratio is about the samefor the clay and silt-sand fractions (56.10-s) in the estuarineregion,though there is a variation of over a factor of 2 in the freshwaterend-memberregion (Fig. 5). The Co/Al ratio of the clay fraction shows about a factor of 2 increasein the open Arabian Sea sediments, whereasno such increasecould be seenin the silt--sand fraction. As in the caseof Ni and Zn, Co can also deposit as authigenic sulphide, but the fact that the silt-and fraction does not show any increaseindicates that such a precipitation is small. The Co/Al ratios in the magneticfraction show variationsby about one order of magnitude. 45 ^ CLAY r MAGNETIC o S I L T+ S A N D ro.60 Ia 5.O s.ss1 4.O r, I = 3.O *. = oo {o z . o A A A (J l.o r) r 2 . o I I x a ) 8.O A t A a . & t l oo3oSo3ooo o o ; 14?'2 a a o ao o a 4.Oi 1 C) 2.O' S o a t t a A to s I a D l2 14 r6 a o o a A o .^, ogo^loooooo8 o " 3 1 l8 I o o 20 NEAR COASTAL C H L O R I N I T Y( 9 / l ) Fig. b. Co/Al and Cu/Al variations in the Narbada and Tapti estuarine particles (solid symbols) and sediments (open eymbolsl-in the three fractions. Data points in the near' coastaland open*ea regionsare offset for clarity. Cr/Al ratio These ratios for all fractions are shown in Fig. 6. The freshwater end' member valuescluster around 1.4.10-3 for both clay and silt-sand fractiorfs, whereasit is higher by about a factor of 2 for the magneticfraction. Unlike the caseof other elements,the Cr/Al ratio showsconsiderablescatter in the entire region of study, and more so in the coastal Arabian Sea sediments' Again there is about one order of magnitude variation of the Cr/Al ratio in the magneticfraction. Metal/Fe ratios in the magneticfraction In view of the rather low and varying Al concentrations of the magnetic fractions, the metal/Al ratio may not be a good parameter for studying the behavior of the elementsin this fraction. Since Fe is the major element of this fraction, we havenormalisedthe metal concentrations(Fig. 7). The Mn/ Fe, Znl$e, Cu/Fe ratios do not then vary by more than a factor of -2, 46 r MAGNETIC . S I L T+ S A N D A CLAY t3 'T' o 9 ro '9 5 3.O o o o 2.5 x a z.o (J i r.5 ' E ra o^ A 1A a I Sa 8 o t a oa 8 a A ! " o t.o o'5o' 20 NEAR COASTAL oPEN C H L O R I N I T(Y9 / l ) Fig. 6. Cr/Al variationsin the Narbadaand Tapti estuarineparticles(solid synrbols)and sediments (open symbols) in the three fractions. Data points representing the nearcoastaland open*ea regionsare offset for clarity. U' lr, J o. . 5 at l! o 0a IJ @ f z ,1;766;xrCl-a tt, lrJ J o. = an t! o G lrJ @ = f z (ColFc)r lO-a 16u7p6lrtO-3 an lrJ J o- = o L o G t! ID = l z' ,f t.9 27 35 4.3 ( M n l F e ) rl o - 2 0 1 q 1 7 p s 1trO - 3 Fig. 7. Histogtamsof metal/Fe ratios in the magneticfraction of all samples. 47 I nt er-eIement aI corr elat io ns The inter-elemental correlations in each of the fractions has been investigated. For most elements in the magnetic fraction, the conelation coefficients (for 27 observations)were <0.5. Only 7 Fe-Mn, 7 Fe-{u t'tFe-Zn and TFe--Cowere significant,viz. 0.67,0.87, 0.74 and 0.63, respectively.In Fig. 8 are shown the Mn, Cu and Zn corcelationswith Fe. The intercepts at Fe = 0 represent the concentrations of Mn (= 981 ppm), Cu (= 41 ppm) and Zn (= 104 ppm) associated with non-magnetic phases, and these values are in good agreement with their corresponding concentration ranges in the clay and silt-sand fractions (Table IV). E m . 2 . 3 5x l O - 3 c =103.9 r = O.74 4500 o o . c r = 1.g3xt0-z =9 8 0 . 5 = 0.67 o 4000 a a c N a. E 3500 o I c m= l . 6 l x l O c =4 l ' 4 rc O.87 E /'.. 300 o a 250 tv o o f o t4 t a 18 ?2 Fe (%) 26 30 O Fig. 8. Scatter diagtam of Mn, Cu and Zn vs. Fe in the magnetic fractions. m, c and r represent slope, intercept and correlation coefficient, respectively. In the clay fraction, the inter-elemental correlations are poor compared to those in the silt-and fractions (Table V). We discussspecifically the Al-Fe and Al-Mn correlations (Fig. 9). The Al-Fe correlation is: Fe (Vo)= 0.95Al (Vo)+ 0.334 (z = 0.95 for 28 observations) (1) This is excellent and as ideal as expected.On the other hand, Borole et al. (1982b) using the Fe and Al concentrationsof the total suspendedmatter sedimentsfrom the sameregions,obtained: and near-coastal Fe (Vo)= 0.584Al (Vo)+ 2.96 (1 = 0.67 for 82 observations) (2) It was the poor correlation coefficient, coupled with the larger intercept 48 TABLE V Inter-elementalcorrelation matrix for silt--sand fraction AI Fe Cr Mn Co Ni Cu Zn AI Fe Cr Mn Co Ni Cu Zn 1.00 0.95 1.00 0.64 0.64 1.00 0.87 0.89 0.73 1.00 0.81 0.86 0.68 0.92 1.00 0.89 0.88 0.63 0.91 0.88 1.00 0.87 0.86 0.64 0.94 0.94 o.92 1.00 0.60 0.68 0.65 0.68 0.77 0.63 0.69 1.00 -2 'n=g.29xlO r o o o- c.=82,4 . r =O . 8 7 o' o ?o t-:y' h -9 eo = O 800 ?o. .. 1.5gxlO-5 c =3.7 rO.87 40 o 600 c m =g . O Zx l 0 c =7,8 r .0.89 400 t? m.O.95 c =0.334 r =0.95 40 d 6 ?o s o i o) ' 'o=4.2OxlO . ta ' ;:3.;, ,/.. a I t! o 2 0 4 O O 1 to ro A 1(%) ro t? t2 At %) Fig. 9. Scatter diagrams of Fe and Mn vs. Al in the silt--sand fraction of all eamples. m, c and r represent slope, intercept and correlation coefficient, respectively. Fig. 10. Scatter diagrams of Co, Ni and Cu vs. Al in the silt-tand fraction. m, c and r represent slope, intercept and correlation coefficient, respectively. 49 value and relatively lower Fe/Al ratio, that has,in fact, prompted us to separate the suspendedmatter/sedimentsinto the three fractions. Clearly the magneticfraction is responsiblefor the poor Fe-Al correlation (eq. 2). Our result (eq. 1) also implies that the separationof the magneticfraction from silt-rand hasbeensatisfactory. In the caseof Al-Mn, the correlation is good (Fig. g) and from the very low intercept value it is seenthat most of the Mn is associatedwith the silicatephases. Cu, Ni and Co correlatewell with Al (Fig. 10);the correlationcoefficients (for 28 observations) are? Al{u = 0.8?,TAI-Ni = 0.89 and ZAI--Co= 0.81. It is thus seenthat Fe, Mn, Cu, Ni and Co are all brought predominanfly by the silt--and fraction of the detrital material into the coastal Arabian Sea, via the Narbadaand Tapti Rivers. Detrital inputs to the ocean The averageannual input of detrital material as well as that of Al, Fe, Mn, Zn, Cr, Co, Ni and Cu in detrital form are estimated(Table VI). Of this total input to the coastalArabian Sea,only the claysreachthe deepsea.Sincewe have measuredthe clay content and its compositionin all samples,including those from the freshwater end-memberregions of both the Narbada and Tapti, we can calculate the detrital inputs from these rivers to the deep sea and compare it with the total inputs to the coastal ocean. It is clear from such a comparison(Table VI) that input to the deep oceanin terms of suspended matter and the analysedmetalsis only -EVo of their inputs to the coast. Both the Narbada and Tapti behave similarly in this respect. The Tapti, being a smallerriver (with a dam), has proportionately lower inputs than the Narbada. TABI/E VI Suspended fluxes from the Narbada and Taptt Blvers to the ocean Matcdal gJn.r'r AT Fe Mn Ct Co Ni Cu Zn Narbada 1q(r) (tbeg vr.-r) "r.-,; floor. (%, 1Fo1Fo) - x too Fo(1) Fo- (FolFOxtoo (1btg vt.-ty (10'g vr.-') (%) 50,000 4,2OO 8.8OO 66 48 1.8 3.6 7,L 6.3 2.600 180 2to 2.9 0.26 o.L2 0.16 o.42 0.34 6.0 4.3 6.6 6,2 6.2 6.7 4.6 6.9 6,4 E.OOO 600 630 10 0.73 300 24 26 o.84 o.o42 o.017 o.o22 0.043 0.041 3.8 4.O 4.1 3,4 6.8 6.9 4.! 3.9 3,4 o,2s o,54 1.1 1.2 .Fc and Fo represent fluxes to the coastal ocean (based and open ocean (based on clay data). rerpectlvely. *Except for Cr and Co. data are from Borole et al. (1g82b). **8.rr1. = suspended matter. on total suspended matter data) 50 CONCLUDINGREMARKS The major fluvial input to the Arabian Sea from the Rivers Indus, Narbada and Tapti is 1.6.10t0 g yr.-t,.In the presentstudy it is estimatedthat -1Vo of the combinedsedimentdischargeof the Narbadaand Tapti,viz.0.6'1014 gyr.-l, is in the form of clays.Assumingthat the Indus sedimentdischarge alsohas- 1Voclay, we estiinatethat 8. 10 " g of claysare annuallydischarged into the Arabian Sea(area= 7 ,5. L06km2;Robinson,1966) which givesa detrital deposition rate of -0.6 mm/103yr. Clearly this is a lower limit as we have not consideredaeolianand other modesof input into the Arabian Sea. This rate of detrital deposition should be much smallerthan that occurring in the Bay of Bengal.A few meastuementsby Sarin et al. (1979) in the southernpart of the Bay of Bengalcenteraround 3-4 mm/103yr. Studiessimilar to the presentone, aswell asthoseof Borole et al. (1982a, b), would have to be performed on the Indus river-estuarine systembefore one could quantify the major detrital input to the Arabian Sea.Once the geochemicaland geochronologicalstudiesof the Arabian Seasedimentshave been done, one can understandthe effectsof biogeochemicaland diagenetic processesoperatingin the highty productive marine environmenton the de' trital material, and material balancescan be attempted.The presentstudy is a first step in this direction. ACKNOWLEDGEMENTS This work was, in part, supported by a grant from the Department of Scienceand Technology,Governmentof India. The authorsare indebtedto Mr. H.N. Siddiquie of the National Institute of Oceanography,Goa, for a samplesusedin this study; and to Profesgeneroussupply of the near-coarital sor A.S. Naidu of the Institute of Marine Sciences,University of Alaska, Fairbanks,U.S.A., for a critical reviewof the manuscript. REFERENCES Borole, D.V., 1980. Radiometric and trace elementalinvestigationeon Indian estuaries and adjacentseae.Ph.D. Thesis,Guajaratuniversity, Ahmedabad,155 pp. Borole, D.V, Krishnaswami,S. and Somayajulu,B.L.K., L9TT.Investigationeon dissolved uranium, silicon and particulate trace elements in estuaries.Estuarine Coastal Mar. Sci.,5: 7 43-754. Borole, D.V., Kriehnaswami,S. and Somayajulu,B.L.K., 1982a. Uranium isotopes in rivers, estuaries and adjacent coastal sediments of western India: their weathering, transportationand oceanicbudget.Geochim.Coemochim.Acta, 46: L25-L37, Borole, D.V., Sadn, M.M. and Somayajulu,B.L.K., 1982b. Composition of Narbadaand Tapti estuarineparticlesand adjacentArabianseasediments.Ind. J. Mar. Sci., 11: 5162. Boyle, 8.R., Collier,8., Dengler,A,T., Edmond,J.M., Ng, A.C. and Stallard,R.F., L914. On the chemicalmassbalancein estuaries.Geochim.Cosmochim.Acta,38:1719L728. 51 Burton, J.D. and Liss,P.S.,1976.EstuarineChemistry.AcademicPress,London, 229 pp. Carpenter,J.H. and Hayes,W.B., 1980. Annual accretionof Fe-Mn-oxidesand certain associatedelementsin a streamenvironment.Chem.Geol., 29: 249-259, Deuser,W.G., 1975. Reducingenvironments.In: J.P. Riley and G. Skirrow (Editors), Vol. 3 AcademicPress,London, pp. 1-37. ChemicalOceanography, recyclingin Evans,D.W., Cutshall,N.H., Cross,F.A. and Wolfe, D.A., 1977. Manganese Newport estuary,North Carolina.EstuarineCoastalMar. Sci., 5: 71-80. and L., t9TS.Interactionbetweensuspension Fukai, R., Murray, C.N. and Huygh-Nogoc, seawateras a possibleregulatingmechanismfor trace element concentrationin nearshorewater - A preliminaryreport. ThalassiaJugosl.,9: 33-37. Galehouse,J.S., 1971. Sedimentationanalysis.In: R.E. Carver(Editor), Proceduresin SedimentaryPetrology.Wiley-Interscience,New York, N.Y., pp. 69-94. Hutchison, C.S., 19?4. Laboratory Handbook of PetrogtaphicTechniques.Wiley, New York, N.Y., 527 pp. Kharkar, D.P., Turekian, K.K. and Bertine, K.K., 1968. Stream supply of dissolvedAg, Mo, Sb, Se, Cr, Co, Rb and Cs to the oceans.Geochim.Cosmochim.Acta, 32:285298. Krishnaswami,S., 19?6. Authigenictransition elementsin Pacific pelagicclaye.Geochim. Cosmochim.Acta, 4Qz426-434. Martin, J.M. and Meybeck,M., 19?9. Elementalmassbalanceof materialcarriedby maior world rivers.Mar. Chem,,7; t7 9-206. Martin, J.M., Jednack, J. and Pravotic, V., 19?1. The physicochemicalaspectsof trace elementbehaviourin estuarineenvironments.ThalassiaJugosl.,7: 619-637. Martin, J.M., Kulbicki, G. and Degtoot, A.J., 19?3. Terrigenoussupply of radioactiveand trace elements to the ocean.Proc. Intl. Symp. on Hydrogeochemistryand Biogeo' chemistry,Vol. 1. The Clarke& Co., Washington,D.C., pp. 463-483. Milliman, J.D. and Meade, R.H., 1983. World-wide delivery of river sediment to the oceans.J. Geol.,91: 1-21. Rao,K.L., 1975.India'sWater\{ealth. Orient Longman,New Delhi, 255 pp. Ray, S.8., Mohanti, M.M. and Somayajulu,B.L.K., 1984. Suspendedmatter, major ca' tions and dissolved silicon in the estuarine waters of the Mahanadi River, India. J. Hydrol.,69: 183-196. Robineon, M.K., 1966. Arabian Sea.In: R.W. Fairbridge(Editor), The Encyclopediaof Oceanogtaphy.Van Noetrand-Reinhold, New York, N.Y., pp. 4O-44. Sarin, M.M., Borole, D.V. and Krishna$ilami,S., 1979. Geochemistryand geochronolqgy of sedimentsfrom the Bay of Bengaland equatorialIndian Ocean.h'oc. Ind. Acad. Sci.,88A: 131-164. Sarin,M.M., Rao, K.S., Bhattacharya,S.K., Ramesh,R. and Somayajulu,B.L.K., 1983. Geochemicalstudiesof the river estuarinewatersof the Krishna and Godavari'Semin. on Hydrol. with Spec. Colloq. on National Grid of Rivers, Hyderabad,June 8-10, 1983 (abstract). Sholkovitz, 8.R., 19?6. Flocculationof dissolvedorganicand inorganicmatter during the mixing of river water and seawater.Geochim.Coemochim.Acta, 40: 881-845. Teseier,A., Campbell, P.G.C. and Bisson,M., 1980. Trace metal speciationin Yamaska and St. Francoiserivers(Quebec).Can.J. Earth Sci., 17: 90-105. Tlefry, J.H., 197?. The transport of heavy metals by the Mississippiriver and their fate in the Gulf of Mexico. Ph.D. Thesis,Texas A & M Univereity,CollegeStation, Texas, 223 pp. Ttefry, J.H. and Presley,8.J., 1982. Manganesefluxes from Mississippidelta sediments. Geochim.Cosmochim.Acta, 46: L7L6-t726, Turekian, K.K., 1971. Rivers,tributaries and estuaries.In: D.W. Hood (Editor)' Impinge' ment of Man on Oceans.lltiley-Interscience,New York, N.Y., pp. 9-73. Turekian, K,K.,L974. Heavymetalsin estuarinesystems.Oceanus,18: 82-33. Turekian, K.K., 1977. The fate of metalsin estuaries.In: Estuaries,Geophysicsand Environment, National Academyof Sciences,Washington,D.C., pp, t2l-L27, Windom, H.L., Beck, K.C. and Smith, R., 19?1. Ttansport of trace elementsto the At' lantic Oceanby three southeasternrivers.Southeast.Geol., f2: 1109-1181.
© Copyright 2024