High-Field, Thermal & Energy Properties of 2D Devices & Layers Eric Pop Electrical Engineering (EE) and Precourt Institute for Energy (PIE) Stanford University http://poplab.stanford.edu E. Pop Acknowledgements 1 http://poplab.stanford.edu • Our “flatland” (2D) subgroup and alumni: – Dr. Vincent Dorgan, Dr. Myung-Ho Bae – Dr. Enrique Carrion, Dr. Zuanyi Li, Dr. Sharnali Islam – Chris English, Kirby Smithe, Michal Mleczko, Ning Wang • Undergrads: – Maryann, Yuan, Andrew, Tim, Justin • Sponsors: – Air Force Research (AFOSR) – National Science Foundation (NSF) • Collaborators: – E. Reed, K. Goodson, Y. Nishi, I. Fisher, K. Saraswat, H.-S.P. Wong (Stanford) – J. Lyding (UIUC), D. Akinwande (UTA), I. Knezevic (Wisc.), R. Sordan (Milano), A. Roy, V. Varshney (AFRL) E. Pop 2 2D Materials in Our Lab CVD growth of graphene, BN and MoS2 MoTe2 HfSe2 Intensity (a.u.) ZrSe2 BN Si A1g 194 cm-1 100 200 300 400 Raman Shift (cm-1) 20 µm HfSe2 ~ ~ 4 WTe2 (metallic) x 10 WTe2 3.5 exfoliate 3-6 Layer 1.5 1 10 µm Bulk 0.5 mono-MoS2 0 50 ~ ~ 100 µm 2 ~ ~ Intensity (a.u.) 3 2.5 100 150 200 250 300 -1 Raman Shift (cm ) CVT growth of MoTe2, WTe2, ZrSe2, HfSe2 collab. H.S.-P. Wong, Y. Nishi, I. Fisher E. Pop 3 Device (Transistor) Scaling • Problem: 20th century transistors “carved” out of 3D materials (Si) surface roughness restricts mobility, band gap, scaling of dimensions LG ~ (tchtox)1/2 tch roughness 21st • Solution: century transistors with atomically thin 1D and 2D materials (<1 nm) can re-enable LG scaling 104 1D carbon nanotube (CNT) 1 nm µ (cm2V-1s-1) graphene 2D TMD (MoS2, WTe2, ZrSe2) WSe2 102 MoS2 <1 nm 10 SOI 0 sources: K. Uchida, A. Kis, IBM, our work E. Pop CNTs 103 1 2 3 4 tch or d (nm) 4 High-Field Transport in Suspended Graphene V. Dorgan, A. Behnam, H. Conley, K. Bolotin, E. Pop, Nano Letters 13, 4581 (2013) 2000 1500 4000 suspended graphene VD D 1000 500 T (K) (Wm -1 K-1 ) S - SiO2 Si 2000 steeper drop-off than graphite Suspended graphene allows us to study intrinsic coupled electrical-thermal properties experiments 1000 0 300 simulations μ0 = 25,000 cm2/V/s 0.8 0.6 more disordered 0.4 μ0 = 2,500 cm2/V/s 0.2 0 0 3 0 1 2 F (V/m) 1 2 F (V/m) 1,000 T (K) 2,000 5 cleaner v (107 cm/s) 1 3000 1 μm VG I/W (mA/m) This work (exfoliated) This work (CVD) Graphite (in-plane) 4 high-field intrinsic vsat 3 2 1 0 0 2 4 6 8 10 12 14 Sample # 3 E. Pop 5 Simulation: Ambipolar + Poisson + Heating models “GFETTool” and “S2DS” available on http://nanoHUB.org 2 C 1 Cox V0 VGx ox V0 VGx 4nix2 2 q q I sgn( px nx ) qW ( p x nx )vx Vx , j Vx , j 1 sgn( p x nx ) A E. Pop vx 0 1 vx / vsat T k p ' g T T0 0 x x Charge Continuity x iterate iterate p x , nx Poisson Thermal 6 Transport at Graphene Grain Boundaries K. Grosse, V. Dorgan, D. Estrada, J. Wood, I. Vlassiouk, G. Eres, J. Lyding, W. King, E. Pop, Appl. Phys. Lett. 105, 143109 (2014) Goal: Understanding nanometer scale graphene transport, heating and reliability – Measured heating at graphene grain boundaries (GB) – Deduced grain boundary resistance; Collaboration with ORNL technique: scanning Joule expansion microscopy (SJEM) E. Pop 7 High-Field Transport in MoS2 A. Serov, V. Dorgan, C. English, E. Pop, Device Research Conf. (2014) V. Dorgan, A. Serov, C. English, E. Pop, submitted (2015) VD S 300 Au I D ( A/ m) tch VG 120 K 250 MoS2 • Negative differential conductance (NDC) at high-field in MoS2 80 K 160 K VGT ≈ 30 V 200 200 K 150 300 K 100 400 K • Simulations suggest combination of: – Self-heating and µ(T) ~ T-2 – Intervalley scattering (K to Q valley) 50 500 K 1 µm 0 Au 0 2 4 V (V) 6 • Results shed light on band structure 8 D 4 8 7 2 300 K 1.5 500 K 1 0 F (V/ m ) E. Pop 2 0 4 ΔE = 130 meV 3 1 2 Q 4 0.5 0 Γ 5 6 1 0 experiment (T0 = 80 K) 0 2 4 6 -1 -1 0 1 k (nm -1) x 100 1 10-5 0 10-10 y 200 K y 2.5 Upper Valley (Q) Lower Valley (K) K 6 vd (10 6 cm/s) vd (10 6 cm/s) 3 k (nm-1) 80 K k (nm-1) 3.5 -1 -1 0 1 k (nm -1) 10-15 x F (V/ m ) 8 Some Recent Results on Monolayer CVD MoS2 K. Smithe, C. English, S. Suryavanshi, E. Pop, Device Research Conf. (2015) • Growth of monolayer MoS2 by CVD on PTAS/SiO2/Si • Effective mobility (µeff) comparable to exfoliated material Good current achieved (~275 µA/µm) in 80 nm device, but contact resistance remains dominant E. Pop 9 Summary of Challenges in 2D Devices Contact Resistance (RC): Metals Interfaces: VTG VD Graphene VS Metals High-κ Graphene Si (p++) Substrate LT o Pre vac. anneal o Post vac. anneal Si (p++) VBG W L SiO2 (90 or 300 nm) VD Scope VTG GFET 50 Ω VBG Si (p++) RL VP tON,D tON,TG VD tOFF 1.5 Material Quality: SiC Growth +Variability! [2] R [K] [1] 1.6 1.2 0 (b) tON,TG 1 tON,D 0.5 VTG CVD Rprobe Cprobe Cpad VS VBG V [V] Oxide d 0 100 200 Time [ns] DC tON,TG = 100 µs = 10 µs 0.8 0.4 -8 = 400 ns (air) -4 0 VTG [V] 4 8 E. Carrion, E. Pop et al, IEEE TED, 61, 1583 (2014) E. Pop 10 A Few Words on Thermal 2D Work • Large in-plane thermal conductivity of graphene, BN (>500 W/m/K) • Ultra-low cross-plane thermal conductivity of layered WSe2 (<0.1 W/m/K) – Lower than plastics and comparable to air • Huge thermal anisotropy in all layered 2D materials (>10-100x) • MRS Bulletin review with AFRL: E. Pop, V. Varshney, A.K. Roy, "Thermal Properties of Graphene: Fundamentals and Applications," MRS Bulletin 37, 1273 (2012) • Large thermopower in TMDs (S ~ 0.5 mV/K) Thermoelectrics? E. Pop 11 Ballistic Phonons in Graphene Ribbons M.-H. Bae, Z. Li, Z. Aksamija, P. Martin, F. Xiong, Z.-Y. Ong, I. Knezevic, E. Pop, Nature Comm. 4, 1734 (2013) First measurement of quasi-ballistic heat flow in graphene near room temperature graphene nanoribbons First measurement of phonon edge scattering in graphene nanoribbons 9 W~130 nm W~85 nm W~65 nm W~45 nm -2 -1 G/A (Wm K ) 10 10 8 ~T1.5 10 E. Pop long graphene13 (L ~ 10 μm) 7 50 100 T (K) 200 300 400 “long” Maximum heat flow also limited by edge scattering. But, “short” graphene devices reach up to ~35% of theoretical ballistic thermal limit at room T. (diffusive) “short” quasi-ballistic 12 Looking Ahead: Future Opportunities Could we: collab: E. Reed, K. Goodson, K. Saraswat, H.-S.P. Wong, Y. Cui – Exploit anisotropy for routing heat? (thermal diode) – Separate thermal and electrical flow? (thermal transistor) – Design electronics with built-in thermoelectric cooling? – Achieve transparent heat spreaders and flexible thermoelectrics? E. Pop 13 Looking Ahead: Future Opportunities Could we: collab: E. Reed, K. Goodson, K. Saraswat, H.-S.P. Wong, Y. Cui – Exploit anisotropy for routing heat? (thermal diode) – Separate thermal and electrical flow? (thermal transistor) – Design electronics with built-in thermoelectric cooling? – Achieve transparent heat spreaders and flexible thermoelectrics? electrolyte LiPF6 Li Al / MoS2 G (MW/m2/K) Thermal Switching ( ) Pristine MoS2 9 3 1 0 2 4 Time (min) 6 8 A. Sood, F. Xiong, […], E. Pop, Spring MRS (2015) E. Pop 14 Summary • Goals: understand 2D materials and devices for analog (e.g. graphene) and digital (e.g. MoS2) electronics • High-field transport experiment & models • Insights into band structure, grains, power dissipation • Unique 2D thermal properties • Next: Contact: W: http://poplab.stanford.edu E: epop@stanford.edu – Quasi-ballistic transport evaluation – Role of contact geometry – Exploit heterostructures, thermal anisotropy, thermoelectric properties E. Pop 15 E. Pop 16
© Copyright 2024