Les batteries pour l’automobile : défis et stratégies scientifiques M. Morcrette mathieu.morcrette@u-picardie.fr Laboratoire de Réactivité et de Chimie des Solides UMR 7314, Amiens Electrochemical Energy Storage To better manage the use of renewable energy resources Fossil energy Wind Sun Sea To meet the demand for IoT To favour the development of electric transportations (HEVs, EVs) so as to ensure a better environment . Thermal Electric / hybrid How ? By creating new sustainable technologies for electrochemical energy storage 2 Diagramme de Ragone (Automobile) Condensateurs Couplage Energie-Puissance = Vitesse (dé)charge Accélération facteur 15 = autonomie 600 kg 48 L Objectives for Electrochemical storage systems Energy density Various Technologies (Wh.kg-1 ; Wh.L-1) Number of cycles / DOD Type of Materials H Process Higher Safety Higher Energy Higher Rat e Li-ion Li-Metal Li/S Li/air Redox Flow Na-ion Na/S (hot temp.) Aqueous batteries Organic batteries Lower Cost Driven by the market / applications Foresight 4 Advanced Li-ion Advanced electrode materials, new electrolytes, electrode formulation Understanding of the capacity decay for Li-rich layered compounds Opening new chemistry with 4d and 5d metals Doubling of the capacity by triggering anionic redox 5 Eco-compatible storage Eco-efficient synthesis, biomimicry, renewable electrodes, organic redox, LCA-recycling Ionic liquid approach Bacteries/viruses mediated synthesis Decreasing from 700 °C to 200 °C the synthesis temperature and adjusting the morphology Oxidative bacteries to prepare a-Fe2O3 100 200nm 100à-200nm Bacterium (Acidovorax Nanograins of textured a-Fe2O3 BoFeN1) Allow for the synthesis of metastable materials +Fe2+ 30 C/2 days Bacterium + g-FeOOH 6 N. Recham … M. Armand, J.M. Tarascon, Nature Materials, 9, 68-75, 2010 J. Miot, D. Larcher, JM Tarascon , EES, 7, 451-460, 2014 D. Larcher and J.M. Tarascon, Nature Chemistry 2014 doi:10.1038/nchem.2085 6 Capacitive storage Nanostructured materials, pseudo-capacitives, template synthesis From new materials – new pseudocapacitive storage to chemical understanding Demonstration of Pseudocapacitive storage through fast Li+ intercalation into oxides: 2D Li+ - Nb2O5 V. Augustina … P.L. Taberna, P. Simon and B. Dunn Nature Materials , 12, 518-522, 2013 Solid-state MAS-NMR to probe the relative ions concentration in the pores of electrodes 7 M. Deschamps … D. Massiot and F. Beguin Nature Materials , 12, 351-358, 2013 7 Na-ion Prototyping of Na-ion technology Good capacity Good cycling properties (200 cycles) Need to scale-up A. Ponrouch; R. Dedryvere; D. Monti; AE. Demet; JM Ateba Mba; L. Croguennec; C. Masquelier; P. Johansson; MR. Palacin Energy & Environmental Science 6 (8), 2361-2369 (2013) - DOI: 10.1039/c3ee41379a 8 Na-ion Prototyping of Na-ion technology 80 Wh/kg Production d‘électrodes à grande échelle sur Production of du large les lignes pilotes CEAscale electrodes 120-130 Wh/kg Développement de prototypes à ions sodium Prototyping Na-ion cells (Cellules de type 18650 et poches) (pouch and 18650 cells) Na-ion technology should enter the market in 5-10 years (costs advantages + alternative to Na-S technology) 9 New chemistries Li-air, Li-S, Solid State Battery Solid State Batteries Li/S batteries 1000 1,004 1,002 600 1,000 400 0,998 200 Charge Discharge Coloumbic efficiency Capacity mAh.g -1 800 0,996 0 0 50 100 150 200 250 300 350 Cycle Number Concrétiser ces recherches en innovation ! Industrialization of EES-related discoveries (batteries/supercapacitors) takes place abroad (even if discoveries are French/European) BUT France has world-leading companies in the field of energy storage (users AND suppliers: Saft, Blue Solutions, Renault, EDF, Airbus, Solvay…) as well as innovative start-ups. AND Excellence and versatility of French research labs on EES. Research network on electrochemical energy storage (RS2E) Initiated in 2011 by CNRS and Ministry of Research under the proposition of J.M. Tarascon 11 RS2E GOALS FOR EES IN FRANCE • Create a continuum between scientific discoveries and commercial products • Be an active part of a lucrative and growing market (Li-ion market expected to double in 2017 at 24 billion $) • Promote and fund breakthrough researches (unlock and discover) • Sharing ideas amongst a wide array of partners from different backgrounds • Share human resources and equipment 12 ONE NETWORK / THREE KIND OF PARTNERS Coordinated by Jean-Marie Tarascon (CdF) and Patrice Simon (CIRIMAT) 17 NATIONAL RESEARCH LABS (basic research and pretechnological transfer) • 17 labs • 1 beamline (SOLEIL) • 120 researchers + 75 PostDoc/PhD (25 RS2E) 14 COMPANIES 3 PUBLIC RESEARCH ORGANIZATIONS (industrialization, research partnership) (technological research and innovation) • CEA • INERIS • IFPEN • St-Gobain, Solvay, Total, Solvionic •SAFT, E4V, easyLi, Freemens •Alstom, Airbus Group, Renault, EDF, Zodiac Aerospace 13 17 NATIONAL RESEARCH LABS 191 researchers : 46 from CNRS, 75 Universities (25 professors), 70 PhD and Post Docs 14 RESEARCH AREAS 5 MAIN RESEARCH AREAS Advanced Li-ion (L. Croguennec, L. Monconduit) Advanced electrode materials, new, electrolytes, electrode formulation Capacitive storage (P. Simon, T. Brousse) nanostructured materials, pseudocapacitives, template synthesis Eco-compatible storage (A. Chagnes) eco-efficient synthesis, biomimicry, renewable electrodes, organic redox, LCA-recycling New chemistries (J-M Tarascon) Li-air, Li-S, Naion, Na-S, redoxflow, solid state battery Smart materials (F. Sauvage) faradic/ photovoltaics coupling; 3D microbatteries, micro supercap 4 TRANSVERSE RESEARCH AREAS Safety (S. Laruelle) Aging , additives, thermic and electrochemical stability Theory (M-L Doublet) Combinatorial approaches, transports limitations, Systems modelisation Pre-protoyping (M. Morcrette) Electrode formulation, upscaling and repeatability Analytical Platforms (M. Ménétrier) In situ techniques, (XRD, HRTEM, HREELS, preferential access to large equipement) 15 OUR FUTURE HEADQUARTERS 750 m2 of Research labs 600 m2 for communication and scientific exchanges 800 m2 for Characterization tools Coating Calendering Winding 700 m2 of specific equpiments (SEM, TEM, FIB, XRD) opened to industries 500 m2 for Li-ion prototyping 16 INTEGRATION EVALUATION FAISABILITY DEMONSTRATION 193 Wh/kg 17
© Copyright 2024