SOCIETY OF ACTUARIES
EXAM MLC Models for Life Contingencies
EXAM MLC SAMPLE SOLUTIONS
The following questions or solutions have been modified since this document was
prepared to use with the syllabus effective spring 2012,
Prior to March 1, 2012:
Questions: 151, 181, 289, 300
Solutions: 2, 284, 289, 290, 295, 300
Changed on March 19, 2012: Questions: 20, 158, 199 (all are minor edits)
Changed on April 24, 2012: Solution: 292
Changed on August 20, 2012: Questions and Solutions 38, 54, 89, 180, 217 and 218
were restored from MLC-09-08 and reworded to conform to the current presentation.
Question 288 was reworded to resolve an ambiguity. A typo in Question 122 was
corrected. Questions and Solutions 301-309 are new questions
Changed on August 23, 2012: Solution 47, initial formula corrected; Solution 72,
minus signs added in the first integral
Changed on December 11, 2012: Question 300 deleted
Copyright 2011 by the Society of Actuaries
MLC-09-11
PRINTED IN U.S.A.
Question #1
Answer: E
2
q30:34 2 p30:34 3 p30:34
2
p30 0.9 0.8 0.72
2
p34 0.5 0.4 0.20
2
p30:34 0.72 0.20 0.144
2
p30:34 0.72 0.20 0.144 0.776
3
p30 0.72 0.7 0.504
3
p34 0.20 0.3 0.06
3
p30:34 0.504 0.06 0.03024
3
p30:34 0.504 0.06 0.03024
0.53376
2
q30:34 0.776 0.53376
0.24224
Alternatively,
2
q30:34 2 q30 2 q34 2 q30:34
b
g
2 p30q32 2 p34q36 2 p30:34 1 p32:36
= (0.9)(0.8)(0.3) + (0.5)(0.4)(0.7) – (0.9)(0.8)(0.5)(0.4) [1-(0.7)(0.3)]
= 0.216 + 0.140 – 0.144(0.79)
= 0.24224
Alternatively,
2
q30:34 3 q30 3 q34 2 q30 2 q34
1 3 p30 1 3 p34 1 2 p30 1 2 p34
1 0.504 1 0.06 1 0.72 1 0.20
0.24224
(see first solution for
MLC‐09‐11
2
p30 ,
2
p34 ,
3
p30 ,
3
p34 )
1
Question #2
Answer: E
1000 Ax 1000 Ax1:10 10 Ax
10
1000 e 0.04t e 0.06t (0.06)dt e 0.4 e 0.6 e0.05t e 0.07t (0.07)dt
0
0
10
1000 0.06 e0.1t dt e 1 (0.07) e 0.12t dt
0
0
0.10 t 10
0.12 t
1000 0.06 e0.10 e1 (0.07) e0.12
0
0
1
1 e 1 0.07
1000 0.06
0.12 e
0.10
1000 0.37927 0.21460 593.87
Because this is a timed exam, many candidates will know common results for
constant force and constant interest without integration.
For example Ax1:10
10 E x
Ax
e
1 10 Ex
10
With those relationships, the solution becomes
1000 Ax 1000 Ax1:10 10 Ex Ax 10
0.06
0.07
0.06 0.04 10
0.06 0.04 10
1000
e
1 e
0.07 0.05
0.06 0.04
1000 0.60 1 e 1 0.5833 e 1
593.86
MLC‐09‐11
2
Question #3
Answer: D
1
dt
20
1 100
5
0.07 t
e
0
20 7
7
2
1
1
bt vt t px x t dt e0.12t e 0.16t e 0.05t
dt e0.09t dt
0
20
20 0
1 100 0.09t 5
e
0 9
20 9
E Z bt v t t p x x t dt e0.06 t e 0.08 t e 0.05 t
0
0
E Z 2
0
2
5 5
Var Z 0.04535
9 7
Question #4
Answer: C
Let ns = nonsmoker and s = smoker
k=
qxb kg
ns
pxb kg
qxb gk
s
px k
0
.05
0.95
0.10
0.90
1
.10
0.90
0.20
0.80
2
.15
0.85
0.30
0.70
1 ns
A x:2
ns
v qx
1
0.05
1.02
A x:2
1 s
v
1
1.02
ns
px
v2
1
1.022
s
qx
ns
ns
0.95 0.10 0.1403
s
px
v2
0.10
qx 1
1
1.02
2
qx 1
s
0.90 0.20 0.2710
A1x:2 weighted average = (0.75)(0.1403) + (0.25)(0.2710)
= 0.1730
MLC‐09‐11
3
s
Question #5
Answer: B
x x1 x 2 x 3 0.0001045
t
px e0.0001045t
1
APV Benefits e t 1,000,000 t px x dt
0
t
e
0
2
500,000 t px x dt
3
e 200,000 t px x dt
0
1,000,000 0.0601045t
500,000 0.0601045t
250,000 0.0601045t
e
dt
e
dt
e
dt
2,000,000 0
250,000 0
10,000 0
27.5 16.6377 457.54
Question #6
Answer: B
1
EPV Benefits 1000 A40:20
EPV Premiums a40:20
k E401000vq40k
k 20
k E401000vq40k
k 20
Benefit premiums Equivalence principle
1
1000 A40:20
k E401000vq40k a40:20 k E401000vq40k
k 20
20
1
1000 A40:
20
/ a40:20
161.32 0.27414 369.13
14.8166 0.27414 11.1454
5.11
1
and was structured to take
While this solution above recognized that 1000P40:20
advantage of that, it wasn’t necessary, nor would it save much time. Instead, you
could do:
MLC‐09‐11
4
EPV Benefits 1000 A40 161.32
EPV Premiums = a40:20
a40:20
20 E40 k E60 1000vq60 k
k 0
20 E40 1000 A60
14.8166 0.27414 11.1454 0.27414 369.13
11.7612 101.19
11.7612 101.19 161.32
161.32 101.19
5.11
11.7612
Question #7
Answer: C
ln 1.06
0.53 0.5147
0.06
1 A70 1 0.5147
a70
8.5736
d
0.06 /1.06
0.97
a69 1 vp69 a70 1
8.5736 8.8457
1.06
A70 A70
i
2
a69
2 a69 2 1.00021 8.8457 0.25739
8.5902
m 1 works well (is closest to the exact
m
Note that the approximation ax ax
2m
answer, only off by less than 0.01). Since m = 2, this estimate becomes
1
8.8457 8.5957
4
Question #8 - Removed
Question #9 - Removed
MLC‐09‐11
5
Question #10
Answer: E
d = 0.05 v = 0.95
At issue
49
A40 v k 1 k q40 0.02 v1 ... v50 0.02v 1 v50 / d 0.35076
k 0
and a40 1 A40 / d 1 0.35076 / 0.05 12.9848
so P40
1000 A40 350.76
27.013
a40
12.9848
E 10 L K 40 10 1000 A50
Revised
P40 a50
549.18 27.013 9.0164 305.62
Revised
where
Revised
A50
and
24
v k 1 k q50
Revised
k 0
Revised
a50
1 A
Revised
50
0.04 v1 ... v 25 0.04v 1 v 25 / d 0.54918
/ d 1 0.54918 / 0.05 9.0164
Question #11
Answer: E
Let NS denote non-smokers and S denote smokers.
The shortest solution is based on the conditional variance formula
Var X E Var X Y Var E X Y
Let Y = 1 if smoker; Y = 0 if non-smoker
1 AxS
E aT Y 1 axS
1 0.444
5.56
0.1
1 0.286
Similarly E aT Y 0
7.14
0.1
E E aT Y E E aT 0 Prob Y=0 E E aT 1 Prob Y=1
7.14 0.70 5.56 0.30
6.67
MLC‐09‐11
6
E E aT Y
2
2
2
7.14 0.70 5.56 0.30
44.96
44.96 6.672 0.47
E Var aT Y 8.503 0.70 8.818 0.30
Var E aT Y
8.60
Var aT 8.60 0.47 9.07
Alternatively, here is a solution based on
Var(Y ) E Y 2 E Y , a formula for the variance of any random variable.
This can be
2
transformed into E Y 2 Var Y E Y which we will use in its conditional
form
E aT
2
2
2
NS Var aT NS E aT NS
Var aT E aT
2
E aT
2
E aT E aT S Prob S E aT NS Prob NS
0.30axS 0.70axNS
0.30 1 AxS
0.70 1 A
NS
x
0.1
0.1
0.30 1 0.444 0.70 1 0.286
0.30 5.56 0.70 7.14
0.1
1.67 5.00 6.67
E aT
2
E aT 2 S Prob S E aT 2 NS Prob NS
2
0.30 Var aT S E aT S
0.70 Var aT NS E aT NS
2
2
2
0.30 8.818 5.56 0.70 8.503 7.14
11.919 + 41.638 = 53.557
Var aT 53.557 6.67 9.1
2
MLC‐09‐11
7
Alternatively, here is a solution based on aT
1 vT
1 v
Var aT Var
vT
Var
since Var X constant Var X
T
since Var constant X constant
Var vT
2
2
Ax Ax
2
2
Var X
2
which is Bowers formula 5.2.9
This could be transformed into 2Ax 2 Var aT Ax2 , which we will use to get
2
Ax NS and 2AxS .
Ax E v 2T
2
E v 2T NS Prob NS E v 2T S Prob S
2
2Var aT NS Ax NS Prob NS
2
2Var aT S AxS Prob S
0.01 8.503 0.2862 0.70
0.01 8.818 0.4442 0.30
0.16683 0.70 0.28532 0.30
0.20238
Ax E vT
E vT NS Prob NS E vT S Prob S
0.286 0.70 0.444 0.30
0.3334
MLC‐09‐11
8
Ax Ax
2
Var aT
2
2
0.20238 0.33342
9.12
0.01
Question #12 - Removed
Question #13
Answer: D
Let NS denote non-smokers, S denote smokers.
Prob T t Prob T t NS Prob NS P rob T t S P rob S
1 e0.1t 0.7 1 e0.2t 0.3
1 0.7e0.1t 0.3 e0.2t
S0 (t ) 0.3e0.2 t 0.7e0.1t
Want tˆ such that 0.75 1 S0 tˆ or 0.25 S0 tˆ
ˆ
ˆ
ˆ 2
0.25 0.3e2t 0.7e0.1t 0.3 e0.1t
0.7e0.1t
ˆ
Substitute: let x e0.1t
0.3x 2 0.7 x 0.25 0
ˆ
This is quadratic, so x
0.7 0.49 0.3 0.25 4
2 0.3
x 0.3147
e0.1t 0.3147
ˆ
MLC‐09‐11
so tˆ 11.56
9
Question #14
Answer: A
At a constant force of mortality, the benefit premium equals the force of
mortality and so 0.03 .
0.03
2
Ax 0.20
2 2 0.03
0.06
Var 0 L
where A
2
Ax Ax
a
2
2
0.20 13
2
0.03 1
0.09 3
0.06 2
0.09
a
0.20
1
1
0.09
Question #15 - Removed
Question #16
Answer: A
1000 P40
A40 161.32
10.89
a40 14.8166
a
11.1454
1000 20V40 1000 1 60 1000 1
247.78
14.8166
a40
20V 5000 P40 (1 i) 5000q60
21V
P60
247.78 (5)(10.89) 1.06 5000 0.01376 255
1 0.01376
[Note: For this insurance, 20V 1000 20V40 because retrospectively, this is identical
to whole life]
Though it would have taken much longer, you can do this as a prospective
reserve. The prospective solution is included for educational purposes, not to
suggest it would be suitable under exam time constraints.
1000 P40 10.89 as above
1
1000 A40 4000 20 E40 A60:5
1000 P40 5000 P40 20 E40 a60:5
MLC‐09‐11
10
20 E40 5 E60
a65
1
where A60:5
A60 5 E60 A65 0.06674
a40:20 a40 20 E40 a60 11.7612
a60:5 a60 5 E60 a65 4.3407
1000 0.16132 4000 0.27414 0.06674
10.89 11.7612 510.89 0.27414 4.3407 0.27414 0.68756 9.8969
161.32 73.18 128.08 64.79
1.86544
22.32
Having struggled to solve for , you could calculate
above)
calculate 21V recursively.
20V
20 V
prospectively then (as
1
4000 A60:5
1000 A60 5000 P40 a60:5 5 E60 a65
4000 0.06674 369.13 5000 0.01089 4.3407 22.32 0.68756 9.8969
247.86 (minor rounding difference from 1000 20V40 )
Or we can continue to
21V
21V
prospectively
1
5000 A61:4
1000 4 E61 A65 5000 P40 a61:4 4 E61 a65
where
4 E61
l65 4 7,533,964
v
0.79209 0.73898
l61
8,075, 403
1
A61:4
A61 4 E61 A65 0.38279 0.73898 0.43980
a61:4
0.05779
a61 4 E61 a65 10.9041 0.73898 9.8969
3.5905
21V
5000 0.05779 1000 0.73898 0.43980
5 10.89 3.5905 22.32 0.73898 9.8969
255
Finally. A moral victory. Under exam conditions since prospective benefit
reserves must equal retrospective benefit reserves, calculate whichever is simpler.
MLC‐09‐11
11
Question #17
Answer: C
Var Z 2 A41 A41
2
A41 A40 0.00822 A41 (vq40 vp40 A41 )
A41 (0.0028 /1.05 0.9972 /1.05 A41 )
A41 0.21650
2
A41 2 A40 0.00433 2 A41 v 2 q40 v 2 p40 2 A41
2 A41 (0.0028 /1.052 0.9972 /1.052
2
A41 0.07193
Var Z 0.07193 0.216502
0.02544
Question #18 - Removed
Question #19 - Removed
MLC‐09‐11
12
2
A41 )
Question #20
Answer: D
x x1t x 2t
0.2 xt x 2t
x 2t 0.8 xt
'1
qx
k
3
1
'1
px
1
1 e
0.2 k t 2 dt
0
1 e
0.2
k
3
0.04
ln 1 0.04 / 0.2 0.2041
k 0.6123
2
2 qx
2
2
px x dt 0.8
2
0 t
0
0.8 2 qx 0.8 1 2 px
t
px x t dt
x t d t
px e 0
2
2
2
e
k t2 d t
0
8 k
e 3
8 0.6123
3
e
0.19538
2
2 qx
0.8 1 0.19538 0.644
MLC‐09‐11
13
Question #21
Answer: A
k
min( k , 3)
f(k)
f k min( k , 3)
f k min k ,3
0
1
2
3+
0
1
2
3
0.1
(0.9)(0.2) = 0.18
(0.72)(0.3) = 0.216
1-0.1-0.18-0.216 =
0.504
0
0.18
0.432
1.512
0
0.18
0.864
4.536
2.124
5.580
E min( K ,3) 2.124
E min K ,3
2
5.580
Var min( K ,3) 5.580 2.1242 1.07
Note that E min( K ,3) is the temporary curtate life expectancy, ex:3 if the life is
age x.
Question #22
Answer: B
0.1 60
0.08 60
e e
S0 (60)
2
0.005354
0.1 61
0.08 61
e e
S0 (60)
2
0.00492
0.00492
q60 1
0.081
0.005354
MLC‐09‐11
14
2
Question #23
Answer: D
Let q64 for Michel equal the standard q64 plus c. We need to solve for c.
Recursion formula for a standard insurance:
20V45
19V45 P45 1.03 q64 1 20V45
Recursion formula for Michel’s insurance
20V45
19V45 P45 0.01 1.03 q64 c (1 20V45 )
The values of
19 V45
and
20V45
are the same in the two equations because we are
told
Michel’s benefit reserves are the same as for a standard insurance.
Subtract the second equation from the first to get:
0 1.03 (0.01) c(1 20V45 )
c
(1.03) 0.01
1 20V45
0.0103
1 0.427
0.018
MLC‐09‐11
15
Question #24
Answer: B
K is the curtate future lifetime for one insured.
L is the loss random variable for one insurance.
LAGG is the aggregate loss random variables for the individual insurances.
AGG is the standard deviation of LAGG .
M is the number of policies.
L v K 1 aK 1 1 v K 1
d
d
1 Ax
E L Ax ax Ax
d
0.75095
0.24905 0.025
0.082618
0.056604
Var L 1
d
2
2
Ax
Ax2
2
E LAGG M E L 0.082618M
Var LAGG M Var L M (0.068034) AGG 0.260833 M
L
E LAGG E LAGG
Pr LAGG 0 AGG
AGG
AGG
0.082618M
Pr N (0,1)
M 0.260833
0.082618 M
0.260833
M 26.97
1.645
minimum number needed = 27
MLC‐09‐11
0.025
2
1
0.09476 0.24905 0.068034
0.056604
16
Question #25
Answer: D
1 v K 1
for K 0,1, 2,...
d
Z 2 Bv K 1
for K 0,1, 2,...
Z1 12,000
Annuity benefit:
Death benefit:
1 v K 1
Bv K 1
d
12,000
12,000 K 1
B
v
d
d
Z Z1 Z 2 12,000
New benefit:
2
12,000
K 1
Var( Z ) B
Var v
d
12,000
Var Z 0 if B
150,000 .
0.08
In the first formula for Var Z , we used the formula, valid for any constants a and
b and random variable X,
Var a bX b 2 Var X
Question #26
Answer: A
x t: y t x t y t 0.08 0.04 0.12
Ax xt / xt 0.5714
Ay y t / y t 0.4
Axy x t: y t / x t: y t 0.6667
a xy 1/ x t: y t 5.556
Axy Ax Ay Axy 0.5714 0.4 0.6667 0.3047
Premium = 0.304762/5.556 = 0.0549
MLC‐09‐11
17
Question #27
Answer: B
P40 A40 / a40 0.16132 /14.8166 0.0108878
P42 A42 / a42 0.17636 /14.5510 0.0121201
a45 a45 1 13.1121
E 3 L K 42 3 1000 A45 1000 P40 1000 P42 a45
201.20 10.89 12.12 13.1121
31.39
Many similar formulas would work equally well. One possibility would be
1000 3V42 1000 P42 1000 P40 , because prospectively after duration 3, this differs
from the normal benefit reserve in that in the next year you collect 1000P40 instead
of 1000P42 .
Question #28
Answer: E
E min T ,40 40 0.005 40 32
2
32 t f t dt 40 f t dt
w
40
0
40
t f t dt t f t dt 40 .6
w
w
0
40
86 tf t dt
w
40
tf t dt 54
w
40
t 40 f t dt 54 40 .6 50
w
e 40
40
MLC‐09‐11
s 40
.6
18
Question #29
Answer: B
d 0.05 v 0.95
Step 1 Determine px from Kevin’s work:
608 350vpx 1000vqx 1000v 2 px px 1 qx 1
608 350 0.95 px 1000 0.95 1 px 1000 0.9025 px 1
608 332.5 px 950 1 px 902.5 px
px 342 / 380 0.9
Step 2 Calculate 1000 Px:2 , as Kira did:
608 350 0.95 0.9 1000 Px:2 1 0.95 0.9
299.25 608 489.08
1000 Px:2
1.855
The first line of Kira’s solution is that the expected present value of Kevin’s benefit
premiums is equal to the expected present value of Kira’s, since each must equal
the expected present value of benefits. The expected present value of benefits
would also have been easy to calculate as
1000 0.95 0.1 1000 0.952 0.9 907.25
Question #30
Answer: E
Because no premiums are paid after year 10 for (x), 11Vx Ax 11
One of the recursive reserve formulas is
10V
h 1V
hV h 1 i bh1qx h
32,535 2,078 1.05 100,000 0.011 35,635.642
px h
0.989
35,635.642
0
1.05 100,000 0.012 36,657.31 A
11V
x 11
0.988
MLC‐09‐11
19
Question #31
Answer: B
t
The survival function is S0 (t ) 1 :
Then,
x
t
ex
and t px 1
2
x
105 45
30
e45
2
105 65
20
e65
2
e45:65
40
0
t
p45:65dt
40 60 t
0
FG
H
60
40 t
dt
40
1
60 40 2 1 3
t t
60 40 t
60 40
2
3
IJ
K
40
0
1556
.
e 45:65 e 45 e 65 e 45:65
30 20 1556
. 34
In the integral for e45:65 , the upper limit is 40 since 65 (and thus the joint status
also)
can survive a maximum of 40 years.
Question #32
Answer: E
4 S0 (4) / S0 (4)
d
e4 / 100
i
1 e4 / 100
e4 / 100
1 e4 / 100
e4
1.202553
100 e4
MLC‐09‐11
20
Question # 33
Answer: A
L ln px big OP qb g LM ln e OP
q xbi g q xb g M
M ln p b g P x M ln e-b g P
bi g
N
q xb g
Q
x
N
Q
bi g
b g
x b g x b1g x b 2 g x b 3g 15
.
q xb g 1 e b g 1 e 1.5
=0.7769
q xb 2 g
b0.7769gb g b0.5gb0.7769g
2
b g
.
15
0.2590
Question # 34
Answer: D
22
A 60 v 3
B
B
q 60 2
B
pay at end
of year 3
live
then die
2 years in year 3
v4
3p 60
pay at end
of year 4
2 p 60
1
1.03
3
live
3 years
q60 3
then die
in year 4
1 0.09 1 0.11 0.13
1
1.03
4
1 0.09 1 0.11 1 0.13 0.15
0.19
MLC‐09‐11
21
Question # 35
Answer: B
a x a x:5 5 E x a x 5
a x:5
5 Ex
1 e 0.07b5g
4.219 , where 0.07 for t 5
0.07
e 0.07b5g 0.705
a x 5
1
12.5 , where 0.08 for t 5
0.08
b
gb g
a x 4.219 0.705 12.5 13.03
Question #36
Answer: D
1
2
p x p ' x p ' x 0.8 0.7 0.56
1
qx
ln p ' 1
x
q since UDD in double decrement table
ln p x
x
ln 0.8
0.44
ln
0.56
0.1693
0.3 q x 0.1
1
0.3qx
1
0.053
1 0.1qx
To elaborate on the last step:
Number dying from cause
1
1 between x 0.1 and x 0.4
q
0.3 x 0.1
Number alive at x 0.1
Since UDD in double decrement,
1
l x 0.3 qx
l x 1 0.1qx
MLC‐09‐11
22
Question #37
Answer: E
The benefit premium is
oL
1
1
0.04 0.04333
ax
12
v T (0.04333 0.0066)aT 0.02 0.003aT
1 vT
T
v
0.04693
0.02
0.04693 0.04693
v T 1
0.02
2
0.04693
Var o L Var v T 1
0.1(4.7230) 0.4723
Question #38
Answer: D
0.7 0.1 0.2
T 0.3 0.6 0.1
0
0
1
0.52 0.13 0.35
T 0.39 0.39 0.22
0
0
1
2
Actuarial present value (APV) prem = 800(1 + (0.7 + 0.1) + (0.52 + 0.13)) = 1,960
APV claim = 500(1 + 0.7 + 0.52) + 3000(0 + 0.1 + 0.13) = 1800
Difference = 160
Question # 39 - Removed
MLC‐09‐11
23
Question # 40
Answer: D
Use Mod to designate values unique to this insured.
b
g
b
g b gb g
1000b0.36933 / 111418
.
.
g 3315
a60 1 A60 / d 1 0.36933 / 0.06 / 106
.
111418
.
1000 P60 1000 A60 / a60
d
i
Mod
Mod
p60
A60Mod v q60
A61
d
b
b
i
gb
g
1
.
01376
0.8624 0.383 0.44141
.
106
g
a Mod 1 A60Mod / d 1 0.44141 / 0.06 / 106
. 9.8684
d
Mod
E 0 LMod 1000 A60Mod P60a60
i
b
1000 0.44141 0.03315 9.8684
g
114.27
Question # 41
Answer: D
The prospective reserve at age 60 per 1 of insurance is A60 , since there will be no
future premiums. Equating that to the retrospective reserve per 1 of coverage, we
have:
s40:10
A60 P40
P50Mod s50:10 20 k40
10 E50
1
a40:10
a
A40
A40
:20
Mod 50:10
A60
P50
a40 10 E40 10 E50
10 E50
20 E40
0.36913
016132
.
7.70
7.57
0.06
P50Mod
14.8166 0.53667 0.51081
0.51081 0.27414
b
gb
g
0.36913 0.30582 14.8196 P50Mod 0.21887
1000 P50Mod 19.04
MLC‐09‐11
24
Alternatively, you could equate the retrospective and prospective reserves at age
50. Your equation would be:
A50
P50Mod
a50:10
1
A40 a40:10 A40:10
a40 10 E40 10 E40
1
where A40
A40 10 E40 A50
:10
b
gb
g
016132
.
0.53667 0.24905
0.02766
d
7.70
0.02766
ib g 140.16132
.8166 0.53667 0.53667
.
b1000gb014437
g 19.07
0.24905 P50Mod 7.57
1000 P50Mod
7.57
Alternatively, you could set the expected present value of benefits at age 40 to the
expected present value of benefit premiums. The change at age 50 did not
change the benefits, only the pattern of paying for them.
A40 P40 a40:10 P50Mod
0.16132
10 E40
a50:10
.
FG 016132
I
H 14.8166 JK b7.70g d P ib0.53667gb7.57g
b1000gb0.07748g 19.07
Mod
50
1000 P50Mod
4.0626
Question # 42
Answer: A
d xb 2g qxb2 g lxb g 400
b g
d xb1g 0.45 400 180
q x b 2 g
d xb 2 g
400
0.488
l b g d b1g 1000 180
x
x
pxb2 g 1 0.488 0.512
MLC‐09‐11
25
Note: The UDD assumption was not critical except to have all deaths during the
year so that 1000 - 180 lives are subject to decrement 2.
Question #43
Answer: D
Use “age” subscripts for years completed in program. E.g., p0 applies to a person
newly hired (“age” 0).
Let decrement 1 = fail, 2 = resign, 3 = other.
1
1
1
Then q0b g 1 4 , q1b g 15 , q2b g 1 3
q0b2 g
1
q b3g 1
5,
q1b2 g
3,
q b 3g 1
10 ,
0
1
1
b
9,
gb
q2b2 g
1
8
q b 3g 1
2
gb
4
g
This gives p0b g 1 1 / 4 1 1 / 5 1 1 / 10 0.54
p1b g b1 1 / 5gb1 1 / 3gb1 1 / 9g 0.474
p2b g b1 1 / 3gb1 1 / 8gb1 1 / 4g 0.438
So 1b0 g 200, 11b g 200 b0.54g 108 , and 1b2 g 108 b0.474g 512
.
q b1g log pb1g / log pb g q b g
2
2
2
2
c h / logb0.438g 1 0.438
b0.405 / 0.826gb0.562g
q2b1g log
2
3
0.276
d2b1g l2b g q2b1g
512
. 0.276 14
b gb
g
Question #44 - Removed
MLC‐09‐11
26
Question #45
Answer: E
ex
For the given life table function:
x
2
1
k qx
x
x 1
Ax
k b
1 x 1 k 1
v
x k b
a x
Ax
ax
v k 1 k qx
x
1 Ax
d
e50 25 100 for typical annuitants
e y 15 y Assumed age = 70
A70
a30
0.45883
30
a70 9.5607
500000 b a70 b 52, 297
Question #46
Answer: B
10 E30:40 10 p30 10
d p v id p v ib1 i g
b E gb E gb1 i g
.
b 0.54733gb0.53667 gb179085
g
p40 v10
10
10
30
10
10
10
40
10
10
30
10
40
0.52604
The above is only one of many possible ways to evaluate
which should give 0.52604
a30:40:10 a30:40 10 E30:40 a3010:4010
b
g b
gb
g
b13.2068g b0.52604gb114784
.
g
a30:40 1 0.52604 a40:50 1
7.1687
MLC‐09‐11
27
10
p30
10
p40 v10 , all of
Question #47
Answer: A
Equivalence Principle, where is annual benefit premium, gives
1000 A35 ( IA)35 a35
d
1000 A35
1000 0.42898
616761
(1199143
.
.
)
a35 IA 35
b gi
428.98
582382
.
73.66
We obtained a35 from
a35
1 A35 1 0.42898
11.99143
0.047619
d
Question #48 - Removed
Question #49
Answer: C
xy x y 014
.
0.07
Ax Ay
0.5833
0.07 0.05
xy
0.14
0.14
1
1
Axy
0.7368 and a xy
5.2632
. 0.05 0.19
xy 014
xy 0.14 0.05
P
Axy
a xy
Ax Ay Axy
MLC‐09‐11
a xy
b
g
2 0.5833 0.7368
0.0817
5.2632
28
Question #50
Answer: E
20V P20 1 i q40 1 21V
V
21
b0.49 0.01gb1 ig 0.022b1 0.545g 0.545
b1 ig b0.545gb1 0.022g 0.022
0.50
111
.
21V P20 1 i q41 1 22V 22V
. g q b1 0.605g 0.605
b0.545.01gb111
41
q41
0.61605 0.605
0.395
0.028
Question #51
Answer: E
1000 P60 1000 A60 / a60
b
gb
g
1000bq p A g / b1.06 p a g
c15 b0.985gb382.79gh / c106
. b0.985gb10.9041gh 33.22
1000 v q60 p60 A61 / 1 p60 v a61
60
60
61
60
61
Question #52 - Removed
MLC‐09‐11
29
Question #53
Answer: E
g ln(0.96) 0.04082
x02t: y t 0.04082 0.01 0.03082
h ln(0.97) 0.03046
x01t: y t 0.03046 0.01 0.02046
5
00
01
02
03
5(0.06128)
0.736
5 p xy 5 p xy exp x t : y t x t : y t x t : y t dt e
0
Question #54
Answer: B
Transform these scenarios into a four-state Markov chain, as shown below.
0
from year t – 3
to year t – 2
Decrease (D)
from year t – 2
to year t – 1
Decrease (I)
Probability that year t will
decrease from year t - 1
0.8
1
Increase
Decrease
0.6
2
Decrease
Increase
0.75
3
Increase
Increase
0.9
State
0.80 0.00 0.20 0.00
0.60 0.00 0.40 0.00
The transition probability matrix is
0.00 0.75 0.00 0.25
0.00 0.90 0.00 0.10
Note for example that the value of 0.2 in the first row is a transition from DD to DI,
that is, the probability of an increase in year three after two successive years of
decrease.
The requested probability is that of starting in state 0 and then being in either state
0 or 1 after two years. That requires the first row of the square of the transition
probability matrix. It can be obtained by multiplying the first row of the matrix by
each column. The result is [0.64 0.15 0.16 0.05]. The two required probabilities are
0.64 and 0.15 for a total of 0.79. The last two values in the vector do not need to
be calculated, but doing so provides a check (in that the four values must sum to
one).
Alternatively, the required probabilities are for the successive values DDID and
DDDD. The first case is transitions from state 0 to 2 and then 2 to 1 for a
probability of 0.2(0.75) = 0.15. The second case is transitions from 0 to 0 and then
0 to 0 for a probability of 0.8(0.8) = 0.64 for a total of 0.79.
MLC‐09‐11
30
Question #55
Answer: B
lx x 105 x
t p45 l45t / l45 (60 t ) / 60
Let K be the curtate future lifetime of (45). Then the sum of the payments is 0 if
K 19 and is K – 19 if K 20 .
F 60 K IJ 1
60 K
b40 39...1g b40gb41g 13.66
60
2b60g
20 a45
1 GH
60
K 20
Hence,
c
h
c
Prob K 19 13.66 Prob K 32.66
h
b g
ProbbT 33g
Prob K 33 since K is an integer
33 p45
l78 27
l45 60
0.450
MLC‐09‐11
31
Question #56
Answer: C
Ax
2
Ax
d IAi
E
0s x
zd
0
0.4
x
0.25 0.04
2
z
z
Ax ds
0 s
Ax ds
ib g
e 0.1s 0.4 ds
F e I
b0.4 gG
H 01. JK
0.1s
0
0.4
4
01
.
Alternatively, using a more fundamental formula but requiring more difficult
integration.
c IA h
x
z
z
0
0
bg
b0.04g e
t t px x t e t dt
t e0.04 t
0.04
z
0
0.06t
dt
t e 0.1t dt
(integration by parts, not shown)
t
1
0.04
e 0.1 t
0
01
. 0.01
0.04
4
0.01
FG
H
MLC‐09‐11
IJ
K
32
Question #57
Answer: E
Subscripts A and B here distinguish between the tools and do not represent ages.
We have to find e AB
eA
eB
FG 1 t IJ dt t t
H 10K
20
z
z FGH
z FGH
10
0
IJ
K
t
t2
1 dt t
7
14
7
0
7
e AB
2 10
1
t
7
7
0
49
0
49
35
.
14
IJ FG 1 t IJ dt z FG 1 t t t IJ dt
K H 10K
H 10 7 70K
2
7
0
t2 t2
t3
t
20 14 210
7
0
7
49 49 343
2.683
20 14 210
10 5 5
e AB e A e B e AB
5 35
. 2.683 5817
.
Question #58
Answer: A
xt 0.100 0.004 0.104
t
pxb g e 0.104 t
Expected present value (EPV) = EPV for cause 1 + EPV for cause 2.
z
5
b
z
g
b
5
g
2000 e 0.04 t e 0.104 t 0100
.
dt 500,000 e 0.04 t e 0.104 t 0.400 dt
0
0
2000 0.10 500, 000 0.004 e 0.144t dt
5
0
MLC‐09‐11
33
2200
1 e 0.144 5 7841
0.144
Question #59
Answer: A
R 1 px q x
S 1 px e
k
1
1
1
1
e 0
xt dt k dt
xt k dt
0
since e 0
e 0
e 0
1
xt dt k dt
So S 0.75R 1 px e k 0.75q x
1 0.75q x
px
1 qx
px
ek
1 0.75q x 1 0.75q x
e k
k ln
LM 1 q OP
N1 0.75q Q
x
x
MLC‐09‐11
34
Question #60
Answer: C
A60 0.36913
2
d 0.05660
A60 0.17741
and
2
2
A60 A60
0.202862
Expected Loss on one policy is E L 100,000 A60
d
d
2
Variance on one policy is Var L 100,000 2 A60 A60
d
On the 10000 lives,
E S 10,000 E L and Var S 10,000 Var L
2
The is such that 0 E S / Var S 2.326 since 2.326 0.99
10,000 100,000 A60
d
d
2.326
2
100 100,000 2 A60 A60
d
100 100,000 0.36913
d
d
2.326
100,000 0.202862
d
0.63087
d
36913
100,000
0.63087
0.004719
d
36913 471.9 0.004719
d
36913 471.9
d 0.63087 0.004719
59706
59706 d 3379
MLC‐09‐11
d
35
Question #61
Answer: C
0V 1 i 1000 1V 1V q75
1V
1.05 1000q75
Similarly,
2 V 1V 1.05 1000q76
3V
2V 1.05 1000q77
1000 3V 1.053 1.052 1.05 1000 q75 1.052 1000 1.05 q76 1000 q77 *
1000 1000 1.052 q75 1.05q76 q77
1.053 1.052 1.05
1000 x 1 1.052 0.05169 1.05 0.05647 0.06168
3.310125
1000 1.17796
355.87
3.310125
* This equation is an algebraic manipulation of the three equations in three
unknowns 1V , 2V , . One method – usually effective in problems where benefit
= stated amount plus reserve, is to multiply the 1V equation by 1.052 , the 2V
equation by 1.05, and add those two to the 3V equation: in the result, you can
cancel out the 1V , and 2V terms. Or you can substitute the 1V equation into the
2 V equation, giving 2 V in terms of , and then substitute that into the 3V
equation.
Question #62
Answer: D
A281:2
3V
d
i
FG IJ
H K
b g
1
.
0.05827
1 e 2 0.02622 since ln 106
72
71
1 v
19303
.
72
a28:2
z
2 t
e 1 72 dt
0
500,000 A281:2 6643 a28:2 = 287
MLC‐09‐11
36
Question #63
Answer: D
Let Ax and a x be calculated with x t and 0.06
Let Ax * and a x * be the corresponding values with x t
increased by 0.03 and decreased by 0.03
ax
1 Ax
0.4
6.667
0.06
ax ax
*
x s 0.03 ds 0.03t
*
0
e
dt
Proof: ax 0 e
t
0
e
t
x s ds 0.03t 0.03t
0
e
e
t
e
0
xs ds
0
e 0.06 t dt
ax
Ax* 1 0.03 a x* 1 0.03 a x
b gb
1 0.03 6.667
g
0.8
MLC‐09‐11
37
dt
Question #64
Answer: A
bulb ages
Year
0
1
0
1
2
3
10000
0
1000
9000
100+2700
900
280+270+3150
2
3
0
0
6300
0
0
0
The diagonals represent bulbs that don’t burn out.
E.g., of the initial 10,000, (10,000) (1-0.1) = 9000 reach year 1.
(9000) (1-0.3) = 6300 of those reach year 2.
Replacement bulbs are new, so they start at age 0.
At the end of year 1, that’s (10,000) (0.1) = 1000
At the end of 2, it’s (9000) (0.3) + (1000) (0.1) = 2700 + 100
At the end of 3, it’s (2800) (0.1) + (900) (0.3) + (6300) (0.5) = 3700
1000 2800 3700
.
105
. 2 105
. 3
105
6688
Expected present value
Question #65
Answer: E
e25:25
z
z
15
0 t
p25 dt 15 p25
15 .04 t
0
e
d
z
10
0t
FG z IJ e
Kz
H
i e LMN.051 d1 e
dt e
15
0
.04 ds
1
.60
1 e .60
.04
.
112797
4.3187
15.60
MLC‐09‐11
p40 dt
10 .05t
0
dt
.50
iOPQ
38
#
replaced
1000
2800
3700
Question #66
Answer: C
5
p 60 1
e1 q je1 q jb1 q gb1 q gb1 q g
b0.89gb0.87gb0.85gb0.84gb0.83g
60 1
60 2
63
64
65
0.4589
Question # 67
Answer: E
1
0.08 0.04
12.50 a x
Ax
0.5
1
2
Ax
2 3
e j
Var aT
2
Ax Ax2
2
1
1
3 4 52.083
0.0016
S.D. 52.083 7.217
MLC‐09‐11
39
Question # 68
Answer: D
v 0.90 d 010
.
Ax 1 dax 1 010
. 5 0.5
b gb g
Benefit premium
5000 Ax 5000vqx
ax
b5000gb0.5g 5000b0.90gb0.05g 455
5
10th benefit reserve for fully discrete whole life 1
0.2 1
ax 10
ax
ax 10
ax 10 4
5
b gb g
a
b5000gb0.6g b455gb4g 1180
Ax 10 1 dax 10 1 010
. 4 0.6
10V
5000 Ax 10
x 10
Question #69
Answer: D
v is the lowest premium to ensure a zero % chance of loss in year 1 (The present
value of the payment upon death is v, so you must collect at least v to avoid a loss
should death occur).
Thus v = 0.95.
2
E Z vqx v 2 px qx 1 0.95 0.25 0.95 0.75 0.2
bg
d i
b g
0.3729
b g
b g
2
4
E Z2 v 2qx v 4 px qx 1 0.95 0.25 0.95 0.75 0.2
0.3478
b g d i c b gh
Var Z E Z2 E Z
MLC‐09‐11
2
b
g
0.3478 0.3729
2
40
0.21
Question #70
Answer: D
Expected present value (EPV) of future benefits =
0.005 2000 0.04 1000 /1.06 1 0.005 0.04 0.008 2000 0.06 1000 /1.062
47.17 64.60
111.77
EPV of future premiums 1 1 0.005 0.04 /1.06 50
1.9009 50
E 1 L K 55
95.05
1 111.77 95.05 16.72
Question #71 - Removed
Question #72
Answer: A
Let Z be the present value random variable for one life.
Let S be the present value random variable for the 100 lives.
E ( Z ) 10 e t e t dt
5
10
e ( )5
2.426
FG IJ e b g
H 2 K
F 0.04 IJ de i 11233
10 G
.
H 0.16 K
Var b Z g E d Z i c E b Z gh
d i
2 5
E Z 2 102
0.8
2
2
2
.
11233
2.4262
5.348
bg
bg
VarbSg 100 Varb Zg 534.8
E S 100 E Z 242.6
F 242.6
.
1645
F 281
534.8
MLC‐09‐11
41
Question #73
Answer: D
Prob{only 1 survives} = 1-Prob{both survive}-Prob{neither survives}
b
ge
1 3p50 3p 50 13p50 1 3p 50
b
gb
gb
gb
j
gb
gb
g b
gb
1 0.9713 0.9698 0.9682 0.9849 0.9819 0.9682 1 0.912012 1 0.93632
0.912012
g
0.936320
0.140461
Question # 74 - Removed
Question #75 - Removed
Question # 76
Answer: C
This solution applies the equivalence principle to each life. Applying the
equivalence principle to the 100 life group just multiplies both sides of the first
equation by 100, producing the same result for P.
EPV Prems P EPV Benefits 10q70v 10 p70 q71v 2 Pp70 p71v 2
P
b10gb0.03318g b10gb1 0.03318gb0.03626g Pb1 0.03318gb1 0.03626g
108
.
108
. 2
0.3072 0.3006 0.7988 P
0.6078
P
3.02
0.2012
(EPV above means Expected Present Value).
MLC‐09‐11
42
108
. 2
Question #77
Answer: E
Level benefit premiums can be split into two pieces: one piece to provide
term insurance for n years; one to fund the reserve for those who survive.
Then,
Px Px1:n Px:n1 nV
And plug in to get
b
gb
g
0.090 Px1:n 0.00864 0.563
Px1:n 0.0851
Another approach is to think in terms of retrospective reserves. Here is one such
solution:
V Px Px1:n
sx:n
n
Px Px1:n
aE
x:n
n
P
P P
P
Px Px1:n
x
ax:n
1
x:n
ax:n
1
x
x:n
1
x:n
e
j
0.563 0.090 Px1:n / 0.00864
b
gb
g
Px1:n 0.090 0.00864 0.563
0.0851
MLC‐09‐11
43
Question #78
Answer: A
b g
ln 1.05 0.04879
Ax
x
t
0
x
0
px x t e t dt
1 t
e dt for the given mortality function
x
1
a
x x
From here, many formulas for the reserve could be used. One approach is:
Since
A50
a50
50
1 A50
18.71
0.3742 so a50
12.83
50
1 A40
19.40
0.3233 so a40
13.87
60
60
0.3233
P A40
0.02331
13.87
reserve A50 P A40 a50 0.3742 0.0233112.83 0.0751.
A40
a60
Question #79
Answer: D
Ax E vTx E vTx NS Prob NS E vTx S Prob S
0.03
0.6
0.70
0.30
0.03 0.08
0.06 0.08
0.3195
Similarly, 2 Ax
F
H
Var aT
I
b gK
x
MLC‐09‐11
2
FG 0.03 IJ 0.70 FG 0.06 IJ 0.30 01923
.
.
H 0.03 016
H 0.06 016
. K
. K
Ax Ax2
2
01923
.
0.31952
..
141
0.082
44
Question #80
Answer: B
2 q80:84
2 q80 2 q84 2 q80:84
0.5 0.4 1 0.6 0.2 0.15 1 0.1
= 0.10136
Using new p82 value of 0.3
0.5 0.4 1 0.3 0.2 0.15 1 0.1
= 0.16118
Change = 0.16118 – 0.10136 = 0.06
Alternatively,
2 p80 0.5 0.4 0.20
3 p80 2 p80 0.6 0.12
2 p84 0.20 0.15 0.03
3 p84 2 p84 0.10 0.003
2 p80:84 2 p80 2 p84 2 p80 2 p84 since independent
3
p80:84
0.20 0.03 0.20 0.03 0.224
3 p80 3 p84 3 p80 3 p84
0.12 0.003 0.12 0.003 0.12264
2 q 80:84 2 p80:84 3 p80:84
0.224 0.12264 0.10136
Revised
3 p80 0.20 0.30 0.06
3
p 80:84 0.06 0.003 0.06 0.003
0.06282
2 q 80:84 0.224 0.06282 0.16118
change 0.16118 0.10136 0.06
Question #81 - Removed
MLC‐09‐11
45
Question #82
Answer: A
5
b g pb1g pb2g
p50
5 50 5 50
FG 100 55IJ e b gb g
H 100 50 K
b0.9gb0.7788g 0.7009
0.05 5
Similarly
10
FG 100 60IJ e b g b g
H 100 50 K
b0.8gb0.6065g 0.4852
b g
p50
0.05 10
b g pb g pb g 0.7009 0.4852
5 5 q50
5 50
10 50
0.2157
Question #83
Answer: C
Only decrement 1 operates before t = 0.7
b g b0.7g qb1g b0.7gb010
. g 0.07
1
0.7 q40
40
Probability of reaching t = 0.7
since UDD
is
1-0.07 = 0.93
Decrement 2 operates only at t = 0.7, eliminating 0.125 of those who reached 0.7
b gb
g
b2g 0.93 0125
q40
.
011625
.
MLC‐09‐11
46
Question #84
Answer: C
e
j
1 2 p80v 2 1000 A80
FG
H
1
0.83910
. 2
106
vq80 v 3 2 p80q82
2
2
IJ 665.75 FG 0.08030 0.83910 0.09561IJ
K
. g
. g
2b106
H 2b106
K
3
b
g
b
b167524
.
g 665.75
g
174680
.
665.75 0.07156
397.41
Where 2 p80
3,284 ,542
0.83910
3,914 ,365
b
gb
g
Or 2 p80 1 0.08030 1 0.08764 0.83910
Question #85
Answer: E
At issue, expected present value (EPV) of benefits
bt vt t p65
0
65 t
dt
1000 e0.04t e0.04t t p65 65 t dt
0
1000
0
t
p65 65 t dt 1000 q65 1000
EPV of premiums a65
FG 1 IJ 16.667
H 0.04 0.02 K
Benefit premium 1000 / 16.667 60
2V
z
z
0
0
b g
b2u v u u p67 65 2 u du a67
b g b gb
1000 e0.04b 2 uge 0.04u u p67 65 2 u du 60 16.667
1000e0.08
z
0 u
b g
p67 65 2 u du 1000
1083.29 q67 1000 1083.29 1000 83.29
MLC‐09‐11
47
g
Question #86
Answer: B
(1)
ax:20 ax:20 1 20 Ex
(2)
ax:20
(3)
Ax:20
(4)
Ax A1x:20 20 Ex Ax 20
1 Ax:20
d
A1x:20
Ax:201
b gb g
0.28 A1x:20 0.25 0.40
A1x:20 018
.
Now plug into (3):
Ax:20 018
. 0.25 0.43
ax:20
Now plug into (2):
Now plug into (1):
b
1 0.43
.
1197
0.05 / 105
.
g
a x:20 1197
. 1 0.25 1122
.
Question #87 - Removed
Question #88
Answer: B
ex px px ex 1 px
ex
8.83
0.95048
1 ex 1 9.29
ax 1 vpx v 2 2 px ....
a
x:2
1 v v 2 2 px ...
ax:2 ax vq x 5.6459 5.60 0.0459
v 1 0.95048 0.0459
v 0.9269
1
i 1 0.0789
v
MLC‐09‐11
48
Question #89
Answer: E
One approach is to enumerate the possible paths ending in F and add the
probabilities:
FFFF – 0.23 = 0.008
FFGF – 0.2(0.8)(0.5) = 0.080
FGFF – 0.8(0.5)(0.2) = 0.080
FGHF – 0.8(0.5)(0.75) = 0.300
The total is 0.468.
An alternative is to use matrix multiplication. The desired probability is the value in
the upper left corner of the transition probability matrix raised to the third power.
Only the first row needs to be evaluated.
The first row of the matrix squared is [0.44 0.16 0.40 0.00], obtained by multiplying
the first row by each column, in turn. The first row of the matrix cubed is obtained
by multiplying the first row of the squared matrix by each column. The result is
[0.468 0.352 0.080 0.100]. Note that only the first of the four calculations in
necessary, though doing the other three and observing that the sum is 1 provides
a check.
Either way, the required probability is 0.468 and the actuarial present value is
500v3 (0.468) 500(0.9)3 (0.468) 171 .
Question #90 – Removed
MLC‐09‐11
49
Question #91
Answer: E
1
1
75 60 15
1
1 3 1
60F
85
60 15 5 25
60M
t
10
t
1
25
t
M
p65
1
t
F
p60
Let x denote the male and y denote the female.
e x 5 mean for uniform distribution over 0,10
e y 12.5 mean for uniform distribution over 0,25
10
t
t
e xy 1 1 dt
0
10 25
10
7
t2
1
t
dt
0
50 250
t
7 2 t3
t
100
750
10
0
10
7
1000
100
100
750
10 7
exy ex e y exy 5
MLC‐09‐11
4 13
3 3
25 13 30 75 26
1317
.
2
3
6
50
Question #92
Answer: B
1
3
1
2
Ax
2 5
Ax
c h
P Ax 0.04
F P c A hI A A
Var b Lg G 1
j
H JK e
F 0.04 IJ FG 1 FG 1IJ IJ
G1
H 0.08 K H 5 H 3K K
F 3I F 4 I
G J G J
H 2 K H 45K
2
x
2
2
x
x
2
2
2
1
5
Question #93
Answer: A
Let be the benefit premium
Let kV denote the benefit reserve at the end of year k.
For any n, nV 1 i q25 n n1V p25 n n1V
Thus 1V 0 V 1 i
2V
3V
n 1V
1V 1 i 1 i 1 i
s2
2V 1 i
s2 1 i
s3
By induction (proof omitted)
sn
n V
For n 35, n V a60 (expected present value of future benefits; there are no future
premiums)
a60
s35
a60
s35
For n 20,
MLC‐09‐11
20 V
a
s20 60
s35
s
20
51
Alternatively, as above
nV 1 i n1V
Write those equations, for n 0 to n 34
0 : 0V 1 i 1V
1: 1V 1 i 2V
2 : 2V 1 i 3V
34 : 34V 1 i 35V
Multiply equation k by 1 i
34 k
and sum the results:
0V 1 i 35 1V 1 i 34 2V 1 i 33 34V 1 i
34
33
32
1V 1 i 2 V 1 i 3V 1 i 34 V 1 i 35V
For k 1, 2, , 34, the k V 1 i
0V
35 k
terms in both sides cancel, leaving
1 i 35 1 i 35 1 i 34 1 i 35V
Since 0V 0
s35 35V
a60
(see above for remainder of solution)
MLC‐09‐11
52
Question #94
Answer: B
x t: y t
t qy t
t qx
px x t t qx t p y y t
t p y t px t q y t px t p y
For (x) = (y) = (50)
50:50 10.5
where
10.5
p50
10.5 q50
10
2
l60 l61 12 8,188,074 8,075, 403 0.90848
l50
8,950,901
1 10.5 p50 0.09152
p50
10.5
1
10.5 q50 10 p50 q60 2
0.09152 0.91478 0.01376 2 0.0023
10.5 q50 10.5 p50 2 10.5 p50 2 0.09152 0.90848 2 0.908482
8,188,074
0.91478
8,950,901
p50 50 10.5 10 p50 q60
since UDD
Alternatively, 10t p50 10 p50 t p60
10t p50:50 10 p50
10t p 50:50 2 10 p50
2
t
t p60
2
p60 10 p50
2
t p60
2
2 10 p50 1 tq60 10 p50 1 tq60 since UDD
2
2
Derivative 2 10 p50 q60 2 10 p50 1 tq60 q60
2
Derivative at 10 t 10.5 is
2 0.91478 0.01376 0.91478 1 0.5 0.01376 0.01376 0.0023
2
10.5
p 50:50 2 10.5 p50 10.5 p50
2
2 0.90848 0.90848
2
0.99162
(for any sort of lifetime)
MLC‐09‐11
dp
dt 0.0023 0.0023
p
0.99162
53
Question #95
Answer: D
xt x1t x 2t 0.01 2.29 2.30
P P vt t px x 2t dt 50, 000 vt t px x1t dt 50, 000 vt t px xt dt
2
2
0
2 0.1t 2.3t
0
P P e
e
0
2
2 0.1t 2.3t
2.29dt 50, 000 e
0
2 2.4
1 e
P 1 2.29
2.4
P = 11,194
e
0.01dt 50, 000 e0.1t e2.3t 2.3dt
2
2 2.4
1 e
50000 0.01
2.4
2.3
e
2 2.4
Question #96
Answer: B
e x p x 2 p x 3 p x ... 11.05
b g
Annuity v 3 3 p x 1000 v 4 4 px 1000 104
. ...
. g
1000b104
k 3 k
v
k px
k 3
1000v 3
k px
k 3
F 1 IJ
1000v be 0.99 0.98g 1000G
H 104
. K
3
3
x
Let = benefit premium.
e
j
1 0.99v 0.98v 2 8072
2.8580 8072
2824
MLC‐09‐11
54
9.08 8072
2.4
Question #97
Answer: B
b g
b ge
1
a30:10 1000 A30 P IA 30
10
:10
10
A30
j
1000 A30
b g
1
1010 A30
a30:10 IA 3010
:
b
g
b
1000 0102
.
7.747 0.078 10 0.088
g
102
6.789
15.024
Question #98
Answer: E
For the general survival function S0 (t ) 1
FG1 t IJ dt
H 30K
L t OP
Mt
N 2b 30g Q
e 30
z
t
,0t ,
30
0
2
30
0
30
2
100 30
35
2
Prior to medical breakthrough
100 e 30
After medical breakthrough
e 30 e 30 4 39
so
e30
39
30
2
108
Question #99
Answer: A
L 100, 000v 2.5 4000a3
@5%
= 77,079
MLC‐09‐11
55
Question #100
Answer: D
accid 0.001
total 0.01
other 0.01 0.001 0.009
Expected present value 500,000 e0.05t e0.01t 0.009 dt
0
10 50,000 e0.04t e0.05t e0.01t 0.001 dt
0
0.009 0.001
500, 000
100, 000
0.02
0.06
Question #101 Removed
Question #102
Answer: D
1000 20V 1000 Ax 20
ax 20
1000 19V 20 Px 1.06 qx 19 1000
px 19
342.03 13.72 1.06 0.01254 1000 369.18
0.98746
1 0.36918
11.1445
0.06 /1.06
so 1000 Px 20 1000
MLC‐09‐11
Ax 20 369.18
33.1
ax 20 11.1445
56
Question #103
Answer: B
k
1
k
xt dt
2 xt dt
e 0
e 0
k px
x1t dt
e 0
k
2
k px where k px is from Illustrative Life Table, since 1 follows I.L.T.
2
10
11 p60
10
6,616,155
0.80802
8,188,074
6,396,609
0.78121
8,188,074
p60
b g p b g p b g
q60
10 60 11 60
b
10
p60
g b
2
11 p60
g
2
from I.L.T.
0.80802 2 0.781212 0.0426
Question #104
Answer: C
Ps
1
d , where s can stand for any of the statuses under consideration.
a s
as
1
Ps d
1
6.25
. 0.06
01
1
axy
8.333
0.06 0.06
ax ay
axy axy ax ay
axy 6.25 6.25 8.333 4.167
Pxy
1
0.06 018
.
4.167
MLC‐09‐11
57
Question #105
Answer: A
z
b
g
g j 48
d 0b g 1000 e b 0.04 gt 0.04 dt
1
0
1000 1 e b 0.04
e
e b 0.04 g 0.952
b
0.04 ln 0.952
g
0.049
0.009
z
b
g
d 3b1g 1000 e 0.049 t 0.009 dt
4
3
1000
0.009 b 0.049 gb 3g b 0.049 gb 4 g
e
e
7.6
0.049
e
j
Question #106
Answer: B
This is a graph of lx x .
b
g
x would be increasing in the interval 80, 100 .
The graphs of lx px , l x and lx2 would be decreasing everywhere.
Question #107
Answer: B
Variance v30 15 px 15 qx
Expected value v15 15 px
v30 15 px 15 qx 0.065 v15 15 px
v15 15qx 0.065 15 qx 0.3157
Since is constant
15 q x
px
15
1 px
15
0.6843
px 0.975
qx 0.025
MLC‐09‐11
58
Question #108
Answer: E
1
2
11V
A
11V
B
1 2
10V
11V
A
10V
A
B
0
p
1 i
B
qx 10
1000
px 10
x 10
p
1 i
11V B
x 10
10V
qx 10
1000
px 10
10V B B
A
101.35 8.36
p
1 i
x 10
1.06
1 0.004
98.97
Question #109
Answer: A
2
EPV (x’s benefits) v k 1bk 1 k px q x k
k 0
b g
b gb g
b gb gb g
1000 300v 0.02 350v 2 0.98 0.04 400v 3 0.98 0.96 0.06
36,829
Question #110
Answer: E
denotes benefit premium
V EPV future benefits - EPV future premiums
1
0.6
0.326
108
.
. q65 10
10V 108
11V
p65
19
b
gb g b gb g
. g b010
. gb10g
b5.0 0.326gb108
1 010
.
=5.28
MLC‐09‐11
59
Question #111
Answer: A
Expected present value Benefits
0.8 0.110,000 0.8 0.9 0.097 9,000
1.062
1, 239.75
1.063
0.8 0.8 0.9
1, 239.75 P 1
1.062
1.06
P 2.3955
P 517.53 518
Question #112
Answer: A
1180 70a30 50a40 20a30:40
b gb g b gb g
1180 70 12 50 10 20a30:40
a30:40 8
a30:40 a30 a40 a30:40 12 10 8 14
100a30:40 1400
Question #113
Answer: B
z
bg
a a f t dt
t
z
1 e 0.05t
1
0.05
0.05
zb
te
t
1
te t dt
2
bg
i
te 1.05t dt
LM b g FG
IJ
H
K
N
1 L F 1 I O
.
M1 G . JK PP 185941
0.05 MN H 105
Q
t
1
1
t 1 et
e 1.05t
2
.
0.05
105
.
105
2
20,000 185941
.
37,188
MLC‐09‐11
60
OP
Q
0
Question #114
Answer: C
Event
x0
Prob
0.05
0.95 0.10 0.095
0.95 0.90 0.855
x 1
x2
Present Value
15
15 20 /1.06 33.87
15 20 /1.06 25 /1.062 56.12
E X 0.0515 0.095 33.87 0.855 56.12 51.95
E X 2 0.05 15 0.095 33.87 0.855 56.12 2813.01
2
2
2
Var X E X 2 E X 2813.01 51.95 114.2
2
2
Question #115
Answer: B
Let K be the curtate future lifetime of (x + k)
k
L 1000v K 1 1000 Px:3 aK 1
When (as given in the problem), (x) dies in the second year from issue, the curtate
future lifetime of x 1 is 0, so
1L
1000v 1000 Px:3 a1
1000
279.21
1.1
629.88 630
The premium came from
A
Px:3 x:3
ax:3
Ax:3 1 d ax:3
Px:3 279.21
MLC‐09‐11
1 d ax:3
ax:3
1
d
ax:3
61
Question #116
Answer: D
Let M = the force of mortality of an individual drawn at random; and T future
lifetime of the individual.
Pr T 1
n
E Pr T 1 M
z
zz
zd
0 0
0
bg
Pr T 1 M f M d
0
2 1
2
s
1
2
e t dt d
1 e
i 21 du 21 d2 e
2
0.56767
Question #117
Answer: E
For this model:
1/ 60
1
(1)
; 40
40(1)t
20 1/ 40 0.025
1 t / 60 60 t
1/ 40
1
(1)
; 40
40(2)t
20 1/ 20 0.05
1 t / 40 40 t
40
20 0.025 0.05 0.075
MLC‐09‐11
i 21 d1 e i
1
62
2
Question #118
Answer: D
Let benefit premium
Expected present value of benefits =
0.03 200,000 v 0.97 0.06 150,000 v 2 0.97 0.94 0.09 100,000 v 3
b gb
g b gb gb
g b gb gb gb
5660.38 7769.67 6890.08
20,32013
.
Expected present value of benefit premiums
ax:3
b gb g
1 0.97v 0.97 0.94 v 2
2.7266
20,32013
.
7452.55
2.7266
1V
. g b200,000gb0.03g
b7452.55gb106
1 0.03
1958.46
Initial reserve, year 2 = 1V
= 1958.56 + 7452.55
= 9411.01
Question #119
Answer: A
Let denote the premium.
b g
L bT v T aT 1 i
T
v T aT
1 aT
E L 1 ax 0
L 1 aT 1
b
g
aT
ax
1
ax
d
ax 1 v T
i
ax
v T 1 ax
v T Ax
ax
1 Ax
MLC‐09‐11
63
g
Question #120
Answer: D
(0, 1)
(1, 0.9)
(1.5, 0.8775)
(2, 0.885)
tp1
1
2
t
1
p1 (1 01
. ) 0.9
2
p1 0.9 1 0.05 0.855
b gb
g
b
g
since uniform, 1.5 p1 0.9 0.855 / 2
0.8775
e1:1.5 Area between t 0 and t 15
.
FG 1 0.9 IJ b1g FG 0.9 0.8775IJ b0.5g
H 2 K H 2 K
0.95 0.444
1394
.
MLC‐09‐11
64
Alternatively,
e11: .5
z
z
zb
1.5
t
0
1
p1dt
z
0.5
p dt 1p1 x
0
0 t 1
1
0
g
p2 dx
1 01
. t dt 0.9
t 0.12t
2
1
0
z
0.5
0
b1 0.05xgdx
0.9 x 0.052 x
0.5
2
0
0.95 0.444 1394
.
Question #121
Answer: A
b g
10,000 A63 112
. 5233
A63 0.4672
Ax 1
A64
b g
Ax 1 i qx
px
. g 0.01788
b0.4672gb105
1 0.01788
0.4813
A65
. g 0.01952
b0.4813gb105
1 0.01952
0.4955
Single gross premium at 65 = (1.12) (10,000) (0.4955)
= 5550
b1 ig
2
5550
5233
i
5550
1 0.02984
5233
Question #122A
Answer: C
Because your original survival function for (x) was correct, you must have
x t 0.06 x02t: y t x03t: y t x02t: y t 0.02
x02t: y t 0.04
Similarly, for (y)
y t 0.06 x01t: y t x03t: y t x01t: y t 0.02
x01t: y t 0.04
MLC‐09‐11
65
The first-to-die insurance pays as soon as State 0 is left, regardless of which state
is next. The force of transition from State 0 is
x01t: y t x02t: y t x03t: y t 0.04 0.04 0.02 0.10 .
With a constant force of transition, the expected present value is
0.10
00
01
02
03
t
0.05 t 0.10 t
(
)
e
p
dt
t
xy
x
t
:
y
t
x
t
:
y
t
x
t
:
y
t
0
0 e e (0.10)dt 0.15
Question #122B
Answer: E
Because (x) is to have a constant force of 0.06 regardless of (y)’s status (and vice23
versa) it must be that 13
x t: y t x t: y t 0.06 .
There are three mutually exclusive ways in which both will be dead by the end of
year 3:
1: Transition from State 0 directly to State 3 within 3 years. The probability of this
is
3
0.02 0.10t
0.3
0 t p dt 0 e 0.02dt 0.10 e 0 0.2(1 e ) 0.0518
2: Transition from State 0 to State 1 and then to State 3 all within 3 years. The
probability of this is
3
00
xy
3
0
3
03
x t: y t
0.10 t
3
t
0.10 t
pxy00 x01t: y t 3t p13
0.04(1 e 0.06(3t ) )dt
x t : y t dt e
0
3
0.04 e
0
0.4(1 e
0.10 t
0.3
e
)e
0.18 0.04 t
0.18
e
(1 e
0.04 0.10t 0.04e0.18 0.04t
e
e
0.10
0.04
0.12
3
0
) 0.00922
3: Transition from State 0 to State 2 and then to State 3 all within 3 years. By
symmetry, this probability is 0.00922.
The answer is then 0.0518 + 2(0.00922) = 0.0702.
MLC‐09‐11
66
Question #122C
Answer: D
Because the original survival function continues to hold for the individual lives, with
a constant force of mortality of 0.06 and a constant force of interest of 0.05, the
expected present values of the individual insurances are
Ax Ay
0.06
0.54545 ,
0.06 0.05
Then,
Axy Ax Ay Axy 0.54545 0.54545 0.66667 0.42423
Alternatively, the answer can be obtained be using the three mutually exclusive
outcomes used in the solution to Question 122B.
1:
0
e 0.05t t pxy00 x03 t: y t dt e 0.05t e 0.10t 0.02dt
2 and 3:
0
0
0.02
0.13333
0.15
13
e 0.05t t pxy00 x01t: y t e 0.05 r r p11
x t : y t x t r : y t r drdt
0
0
0
e 0.05t e 0.10t 0.04 e 0.05 r e 0.06 r 0.06drdt
0.04 0.06
0.14545
0.15 0.11
The solution is 0.13333 + 2(0.14545) = 0.42423.
The fact that the double integral factors into two components is due to the
memoryless property of the exponential transition distributions.
MLC‐09‐11
67
Question #123
Answer: B
5
q35:45 5 q35 5 q45 5 q35:45
5 p35q40 5 p45q50 5 p35:45q40:50
b
g
p q p q p p b1 p p g
b0.9gb.03g b0.8gb0.05g b0.9gb0.8g 1 b0.97gb0.95g
5 p35q40 5 p45q50 5 p35 5 p45 1 p40:50
5 35 40
5 45 50
5 35
5 45
40
50
0.01048
Alternatively,
6
p35 5 p35 p40 0.90 1 0.03 0.873
6
p45 5 p45 p50 0.80 1 0.05 0.76
5 q35:45
5 p35:45 6 p35:45
5 p35 5 p45 5 p35:45 6 p35 6 p45 6 p35:45
5 p35 5 p45 5 p35 5 p45 6 p35 6 p45 6 p35 6 p45
0.90 0.80 0.90 0.80 0.873 0.76 0.873 0.76
0.98 0.96952
0.01048
Question #124 – Removed
Question #125 - Removed
MLC‐09‐11
68
Question #126
Answer: E
Let
Y = present value random variable for payments on one life
S Y present value random variable for all payments
E Y 10a40 148166
.
Var Y 10
2
d
2
2
A40 A40
d
d
i
2
ib
g
2
100 0.04863 016132
106
.
. / 0.06
2
70555
.
E S 100 E Y 14,816.6
Var S 100 Var Y 70,555
Standard deviation S 70,555 265.62
By normal approximation, need
E [S] + 1.645 Standard deviations = 14,816.6 + (1.645) (265.62)
= 15,254
Question #127
Answer: B
e
5 A30 4 A301 :20
Initial Benefit Prem
Where
e
j
5a30:35 4a30:20
b
g b
g b
g
4 0.02933
5 010248
.
5 14.835 4 11959
.
0.5124 011732
0.39508
.
0.015
74.175 47.836
26.339
b
g
j
1
A30
A30:20 A30:201 0.32307 0.29374 0.02933
:20
and
a30:20
1 A30:20
d
1 0.32307
.
11959
0.06
106
.
FG IJ
H K
Comment: the numerator could equally well have been calculated as
A30 4 20 E30 A50 = 0.10248 + (4) (0.29374) (0.24905) = 0.39510
MLC‐09‐11
69
Question #128
Answer: B
0.75
b gb g
px 1 0.75 0.05
0.9625
0.75
b gb g
p y 1 0.75 .10
0.925
0.75 qxy 1 0.75 pxy
b p gd p i since independent
= 1- b0.9625gb0.925g
1
0.75
x
0.75
y
.
01097
Question #129
Answer: D
Let G be the expense-loaded premium.
Expected present value (EPV) of benefits = 100,000 A35
EPV of premiums = Ga35
EPV of expenses = 0.1G 25 2.50 100 a35
Equivalence principle:
Ga35 100,000 A35 0.1G 25 250 a35
A35
0.1G 275
a35
0.9G 100,000 P35 275
G 100,000
G
100 8.36 275
0.9
1234
MLC‐09‐11
70
Question #130
Answer: A
The person receives K per year guaranteed for 10 years Ka10 8.4353K
The person receives K per years alive starting 10 years from now 10 a40 K
b
g
*Hence we have 10000 8.435310 E40a50 K
Derive
10 E40 :
1
A40 A4010
:
10 E40
Derive a50
b
10 E40
1
A40 A40
:10
A50
gA
50
0.30 0.09
0.60
0.35
1 A50 1 0.35
16.90
.04
d
104
.
Plug in values:
10,000 8.4353 0.60 16.90 K
c
b gb
gh
18.5753K
K 538.35
MLC‐09‐11
71
Question #131
Answer: D
e25:11
STANDARD:
z
11
0
FG1 t IJ dt t t
H 75K
2 75
2
e z
1
MODIFIED:
p25
0.1ds
0
e2511
:
11
101933
.
0
e.1 0.90484
z
1
p dt
0 t 25
p25
z FGH
z FGH
10
0
1
IJ
K
t
dt
74
IJ
K
F t I
1 e
e Gt
01
.
H 2 74JK
0.95163 0.90484b9.32432g 9.3886
z
1 0.1t
0
e
dt e 0.1
0.1
0.1
10
0
1
t
dt
74
2
10
0
Difference
=0.8047
Question #132
Answer: B
Comparing B & D: Prospectively at time 2, they have the same future benefits. At
issue, B has the lower benefit premium. Thus, by formula 7.2.2, B has the higher
reserve.
Comparing A to B: use formula 7.3.5. At issue, B has the higher benefit premium.
Until time 2, they have had the same benefits, so B has the higher reserve.
Comparing B to C: Visualize a graph C* that matches graph B on one side of t=2
and matches graph C on the other side. By using the logic of the two preceding
paragraphs, C’s reserve is lower than C*’s which is lower than B’s.
Comparing B to E: Reserves on E are constant at 0.
MLC‐09‐11
72
Question #133
Answer: C
Since only decrements (1) and (2) occur during the year, probability of reaching
the end of the year is
p60
b1g p60
b 2g 1 0.01 1 0.05 0.9405
b
gb
g
Probability of remaining through the year is
p60
. 0.84645
b1g p60
b 2g p60
b3g 1 0.01 1 0.05 1 010
b
gb
gb
g
Probability of exiting at the end of the year is
b3g 0.9405 0.84645 0.09405
q60
Question #134 - Removed
Question #135
Answer: D
EPV of regular death benefit
zb
0
gd
ib
gd
zb
0
gd ib
gd i
100000 e- t 0.008 e- t dt
i
100000 e-0.06t 0.008 e-0.008t dt
b
g
100000 0.008 / 0.06 0.008 11,764.71
EPV of accidental death benefit
zb
30
0
gd
ib
gd
i
zb
30
0
gd ib
100000 e-0.06t 0.001 e-0.008t dt
100 1 e-2.04 / 0.068 1,279.37
Total EPV 11765 1279 13044
MLC‐09‐11
gd i
100000 e- t 0.001 e- t dt
73
Question #136
Answer: B
b gb
g b gb
g
g b gb
g
l 60 .6 .6 79,954 .4 80,625
80,222.4
b gb
l 60 1.5 .5 79,954 .5 78,839
79,396.5
0.9 q 60 .6
80222.4 79,396.5
80,222.4
0.0103
Question #137 - Removed
Question #138
Answer: A
b g qb1g qb2g 0.34
q40
40
40
1
2
1 p40
b g p40
b g
0.34 1 0.75 p40
b 2g
p40
b 2g 0.88
q40
. y
b 2g 012
q41
b 2g 2 y 0.24
b gb g
l b g 2000b1 0.34gb1 0.392g 803
b g 1 0.8 1 0.24 0.392
q41
42
MLC‐09‐11
74
Question #139
Answer: C
bg
Pr L ' 0 0.5
Pr 10,000 v K 1 ' aK 1 0 0.5
From Illustrative Life Table,
47
p30 0.50816 and
48
p30 .47681
Since L is a decreasing function of K, to have
Pr L 0 0.5 means we must have L 0 for K 47.
b g
b g
b g
Highest value of L for K 47 is at K = 47.
b g
L at K 47 10,000 v 471 a471
b g
609.98 16.589
b
g
L 0 609.98 16.589 0
609.98
36.77
16.589
Question #140
Answer: B
b g
Prb K 1g p p 0.9 0.81 0.09
Prb K 1g p 0.81
E bY g = .1 1.09 187
. .81 2.72 2.4715
E dY i = .1 1 .09 187
. .81 2.72 6.407
VARbY g 6.407 2.4715 0.299
Pr K 0 1 px 01
.
1 x
2 x
2 x
2
2
2
2
2
MLC‐09‐11
75
Question #141
Answer: E
E Z b Ax
since constant force Ax /( )
E(Z)
b 0.02
b
b/3
0.06
Var Z Var b v T b 2 Var v b 2
2
Ax Ax2
2
b
2
2 1
4
b2 b2
10 9
45
2
Var Z E Z
4 b
b2
45 3
4 1
b b 3.75
45 3
Question #142
Answer: B
b g b g c AA h
2 2
In general Var L 1 P
c h
Here P Ax
x
2
x
1
1
.08 .12
5
ax
F .12 I
So Var b Lg G 1 J c A A h .5625
H .08K
F b.12gIJ c A A h
and Var b L *g G 1
H .08 K
b1 g b0.5625g .744
So Var b L *g
b1 g
E L * A .15a 1 a b .15g 1 5b.23g .15
E L * Var b L *g .7125
2
2
2
x
x
2
5
4
2
x
2
x
15 2
8
12 2
8
x
MLC‐09‐11
x
x
76
Question #143 - Removed
Question #144
Answer: B
Let l0b g number of students entering year 1
superscript (f) denote academic failure
superscript (w) denote withdrawal
subscript is “age” at start of year; equals year - 1
p0b g 1 0.40 0.20 0.40
l2b g 10 l2b g q2b f g q2b f g 01
.
b
g
q2b w g q2b g q2b f g 10
. 0.6 01
. 0.3
l1b gq1b f g 0.4 l1b g 1 q1b f g q1b w g
e
j
q1b f g 0.4 1 q1b f g 0.3
e
q1b f g
j
0.28
0.2
14
.
p1b g 1 q1b f g q1b wg 1 0.2 0.3 0.5
b g q b w g p b g q b w g p b g p b g q b w g
w
3 q0
0
0
1
0
1
2
b gb g b gb gb g
0.2 0.4 0.3 0.4 0.5 0.3
0.38
MLC‐09‐11
77
Question #145
Answer: D
e25 p25 (1 e26 )
M
e26N e26
due to having the same
1
M 0.05
p25N exp 25M t 0.1(1 t )dt p25
e
0
M
M
e25N p25N (1 e26 ) e 0.05 p25
(1 e26 ) 0.951e25
9.51
Question #146
Answer: D
b g
F c1 A hI 10,000,000
100b10,000gG
H JK
E YAGG 100E Y 100 10,000 a x
x
b10,000g 1 c A A h
b10,000g b0.25g b016
. g 50,000
Y Var Y
2
2
2
b
x
2
x
g
AGG 100 Y 10 50,000 500,000
0.90 Pr
LM F E Y
N
AGG
0
AGG
.
1282
OP
Q
F E YAGG
AGG
. AGG E YAGG
F 1282
b
g
F 1282
.
500,000 10,000,000 10,641,000
MLC‐09‐11
78
Question #147
Answer: A
1
A30:3
1000vq30 500v 2 1 q30 250v3 2 q30
2
3
1 1.53
1
1.61
1
1.70
1000
500
0.99847
250
0.99847 0.99839
1.06 1000
1.06
1000
1.06
1000
1.4434 0.71535 0.35572 2.51447
1
1 1
1 2
0.00153
1
a30:1 1 2 1 2
1 2 q30 0.97129 1
2 2
2
1.06
1 1
0.97129 0.999235
2 2
0.985273
2.51447
Annualized premium
0.985273
2.552
2
2.552
2
1.28
Each semiannual premium
Question: #148
Answer: E
b DAg
1
80:20
q80 .2
q80 .1
eb g j
20vq80 vp80 DA
bg
1
8119
:
b g
b g
b g
b g b gb
2.9b12.225g
12.267
20 .2
.8
1
DA 8119
:
106
.
106
.
13 106
. 4
1
DA 8119
12.225
:
.8
DA801 :20 20v .1 v .9 12.225
13
106
.
Question #149 - Removed
MLC‐09‐11
79
g
Question #150
Answer: A
t
LM
N
px exp
z
OP
Q
b
ds
exp ln 100 x s
0 100 x s
t
g
t
0
100 x t
100 x
e50:60 e50 e60 e50:60
e50
e60
LM
OP 25
z
N
Q
t O
40 t
1 L
dt
z
40t P 20
M
40
40 N
2Q
F 50 t IJ FG 40 t IJ dt z 1 d2000 90t t idt
z G
H 50 K H 40 K
2000
I 14.67
t
1 F
2000t 45t
G
2000 H
3 JK
50
50 50 t
0
t2
1
dt
50t
50
50
2
0
2 40
40
0
0
e50:60
40
40
0
0
2
3
2
40
0
e50:60 25 20 14.67 30.33
Question #151
Answer: C
Ways to go 0 2 in 2 years
0 0 2; p 0.7 0.1 0.07
0 1 2; p 0.2 0.25 0.05
0 2 2; p 0.11 0.1
Total = 0.22
Binomial m = 100 q = 0.22
Var = (100) (0.22) (0.78) = 17
MLC‐09‐11
80
Question #152
Answer: A
For death occurring in year 2
0.3 1000
EPV
285.71
1.05
For death occurring in year 3, two cases:
(1) State 2 State 1 State 4: (0.2 0.1) = 0.02
(2) State 2 State 2 State 4: (0.5 0.3) = 0.15
0.17
Total
EPV =
0.17 1000
154.20
1.052
Total. EPV = 285.71 + 154.20 = 439.91
Question #153 - Removed
Question #154
Answer: C
Let denote the single benefit premium.
30 a35 A351 :30
30
a35
1
1 A35
:30
A
e
35:30
j
1
A35
a65
:30
1
1 A35
:30
b.21.07g9.9
b1.07g
1.386
.93
1.49
MLC‐09‐11
81
Question #155
Answer: E
0.4 p0
.5 e z
0 .4
0
e F e2 x j dx
LM e22x OP.4
N Q0
e
0.8
.4 F F e 2 1 I
H
K
e
.4 F
.5 e .4 F .6128
bg
ln .5 .4 F .6128
.6931 .4F .6128
F 0.20
Question #156
Answer: C
9V P 1.03 qx 9b 1 qx9 10V
qx 9 b 10V 10V
3431.03 0.02904 872 10V
10V 327.97
b b 10V 10V 872 327.97 1199.97
1
1
0.03
P b d 1200
14.65976 1.03
ax
= 46.92
9V benefit reserve at the start of year ten – P = 343 – 46.92 = 296.08
Question #157
Answer: B
d = 0.06 V = 0.94
Step 1 Determine px
668 258vpx 1000vqx 1000v 2 px p x 1 qx 1
668 258 0.94 px 1000 0.94 1 px 1000 0.8836 px 1
668 242.52 px 940 1 px 883.6 px
px 272 / 298.92 0.91
MLC‐09‐11
82
Step 2 Determine 1000 Px:2
668 258 0.94 0.91 1000 Px:2 1 0.94 0.91
220.69 668 479
1000 Px:2
1.8554
Question #158
Answer: D
1
1
1
100,000 IA 40:10 100,000 v p40 IA 41:10 10 v10 9 p41 q50 A40:10
100,000
8,950,901
10
0.99722
9, 287, 264
0.16736
0.00592
100,000
1.06
1.0610
0.02766 100,000
see comment
=15,513
1
Where A40:10
A40 10 E40 A50
0.16132 0.53667 0.24905
0.02766
Comment: the first line comes from comparing the benefits of the two insurances.
At each of age 40, 41, 42,…,49 IA40:10 provides a death benefit 1 greater than
1
IA141:10 .
1
Hence the A40:10
term. But IA41:10 provides a death benefit at 50 of 10,
1
while IA40:10 provides 0. Hence a term involving 9 q41 9 p41 q50 . The various v’s
1
and p’s just get all expected present values at age 40.
MLC‐09‐11
83
Question #159
Answer: A
1000 1V 1 i qx 1000 1000 1V
40 80 1.1 q x 1000 40
qx
88 40
0.05
960
1 AS
G
expenses 1 i 1000qx
px
100 0.4 100 1.1 1000 0.05
1 0.05
60 1.1 50
16.8
0.95
Question #160
Answer: C
1
At any age, px e 0.02 0.9802
1
1
qx 1 0.9802 0.0198 , which is also qx , since decrement 2 occurs only at the
end of the year.
Expected present value (EPV) at the start of each year for that year’s death
benefits
= 10,000*0.0198 v = 188.1
px 0.9802*0.96 0.9410
Ex px v 0.941 v 0.941*0.95 0.8940
EPV of death benefit for 3 years 188.1 E40 *188.1 E40 * E41 *188.1 506.60
MLC‐09‐11
84
Question #161
Answer: B
40
e30:40
t p30dt
0
30 t
dt
30
0
40
t
t2
2 30
40
0
800
30
27.692
40
95
Or, with a linear survival function, it may be simpler to draw a picture:
0
p30 1
40
30
70
e30:40 area =27.692 40
40
p30
p30 0.3846
1 40 p30
2
70
0.3846
30
95
t
p30
65 t
65
Var E T E T
2
MLC‐09‐11
2
85
Using a common formula for the second moment:
Var T 2 t t p x dt ex2
0
65
t
t
2 t 1 dt 1 dt 2
65
0
0 65
65
2* 2112.5 1408.333 65 65 / 2
2
1408.333 1056.25 352.08
Another way, easy to calculate for a linear survival function is
Var T t 2 t px x t dt
0
65
t2
0
t3
3 65
0
t t px x t dt
1
1
65
dt t dt
0
65
65
65
0
t2
2 65
65
0
2
2
2
1408.33 32.5 352.08
2
With a linear survival function and a maximum future lifetime of 65 years, you
probably didn’t need to integrate to get E T30 e30 32.5
Likewise, if you realize (after getting 95 ) that T30 is uniformly distributed on (0,
65), its variance is just the variance of a continuous uniform random variable:
2
65 0
Var
352.08
12
Question #162
Answer: E
218.15 1.06 10,000 0.02
31.88
1 0.02
31.88 218.151.06 9,000 0.021 77.66
2V
1 0.021
1V
MLC‐09‐11
86
Question #163
Answer: D
ex e y t px 0.95 0.952 ...
k 1
0.95
19
1 0.95
exy p xy 2 p xy ...
1.02 0.95 0.95 1.02 0.95 0.95 ...
2
1.02 0.95
1.02 0.95 0.95 ...
1 0.952
exy ex e y exy 28.56
2
4
2
2
9.44152
Question #164 - Removed
Question #165 - Removed
Question #166
Answer: E
ax e0.08t dt 12.5
0
3
0.375
8
3
2
Ax e 0.13t 0.03 dt 0.23077
0
13
2
1 2
2
aT Var aT
Ax Ax 400 0.23077 0.375 6.0048
2
Ax e 0.08t 0.03 dt
0
Pr aT ax aT Pr aT 12.5 6.0048
1 vT
Pr
6.4952 Pr 0.67524 e0.05T
0.05
ln 0.67524
Pr T
Pr T 7.85374
0.05
e0.037.85374 0.79
MLC‐09‐11
87
Question #167
Answer: A
5
0.05 5
p50
e e 0.25 0.7788
1
5 q55
5 1
0.03 0.02 t
55
dt 0.02 / 0.05 e0.05t
t e
0
0.4 1 e
0.25
= 0.0885
5 q55
Probability of retiring before 60 5 p50
= 0.7788*0.0885
= 0.0689
MLC‐09‐11
1
88
5
0
Question #168
Answer: C
Complete the table:
l81 l80 d80 910
l82 l81 d81 830 (not really needed)
1
1
e x ex
since UDD
2
2
e x e x 1 2
l l l 1
e x 81 82 83
l80
2
e 1 l l l Call this equation (A)
80 2 80 81 82
e 1 l l Formula like (A), one age later. Call this (B)
81 2 81 82
Subtract equation (B) from equation (A) to get
1
1
l81 e80 l80 e81 l81
2
2
910 8.5 0.51000 e81 0.5 920
e81
8000 460 910
8.21
920
MLC‐09‐11
89
Alternatively, and more straightforward,
910
0.91
1000
830
p81
0.902
920
830
p81
0.912
910
p80
e80 1 q 80 p 80 1 e 81
2
1
where q80 contributes
since UDD
2
1
8.5 1 0.91 0.91 1 e81
2
e81 8.291
1
e81 q81 p81 1 e82
2
1
8.291 1 0.912 0.912 1 e82
2
e82 8.043
1
e81 q81 p81 1 e82
2
1
1 0.902 0.902 1 8.043
2
8.206
Or, do all the recursions in terms of e, not e , starting with e80 8.5 0.5 8.0 , then
final step e81 e81 0.5
MLC‐09‐11
90
Question #169
Answer: A
T
px t
t
px
vt
vt t px
0
1
2
0.7
0.7
1
0.7
1
0.95238
1
0.6667
0.49
0.90703
–
0.4444
3
2
From above ax:3 vt t px 2.1111
t 0
a
1000 2Vx:3 1000 1 x 2:1
ax:3
1
1000 1
526
2.1111
Alternatively,
Px:3
1
d 0.4261
ax:3
1000 2Vx:3 1000 v Px:3
1000 0.95238 0.4261
526
You could also calculate Ax:3 and use it to calculate Px:3 .
MLC‐09‐11
91
Question #170
Answer: E
Let G be the gross premium.
Expected present value (EPV) of benefits = 1000A50 .
EPV of expenses, except claim expense = 15 1 a50
EPV of claim expense = 50A50 (50 is paid when the claim is paid)
EPV of premiums = G a50
Equivalence principle: Ga50 1000 A50 15 1 a50 50 A50
1050 A50 15 a50
G
a50
For the given survival function,
a50 1 1.0550
1 50 k
1 50 k
A50
v
l
l
v
(
)
(2)
0.36512
50k 1 50k 100
l50 k 1
50
0.05(50)
k 1
1 A50
13.33248
a50
d
Solving for G,
G = 30.88
Question #171
Answer: A
4
0.05 4
p50 e 0.8187
10
8
0.05 10
p50 e 0.6065
0.04 8
p60 e 0.7261
18
p50 10 p50 8 p60 0.6065 0.7261
0.4404
414 q50 4 p50 18 p50 0.8187 0.4404 0.3783
MLC‐09‐11
92
Question #172
Answer: D
a40:5 a40 5 E40 a45
14.8166 0.73529 14.1121
4.4401
a40:5 100,000 A45 v5 5 p40 IA 40:5
1
1
100,000 A45 5 E40 / a40:5 IA 40:5
100,000 0.20120 0.73529 / 4.4401 0.04042
3363
Question #173
Answer: B
Calculate the probability that both are alive or both are dead.
P(both alive) = k p xy k p x k p y
P(both dead) = k qxy k qx k q y
P(exactly one alive) = 1 k pxy k qxy
Only have to do two year’s worth so have table
Pr(both alive)
Pr(both dead)
Pr(only one alive)
1
0
0
(0.91)(0.91) = 0.8281
(0.09)(0.09) = 0.0081
0.1638
(0.82)(0.82) = 0.6724
(0.18)(0.18) = 0.0324
0.2952
0.8281 0.6724
0.1638 0.2952
1
0
EPV Annuity 30, 000
20, 000
80, 431
0
1
2
0
1.05
1.05
1.051
1.052
1.05
1.05
Alternatively,
0.8281 0.6724
2.3986
1.05
1.052
0.91 0.82
ax:3 ay:3 1
2.6104
1.05 1.052
EPV 20, 000 ax:3 20, 000 ay:3 10, 000 axy:3
axy:3 1
(it pays 20,000 if x alive and 20,000 if y alive, but 10,000 less than that if
both are alive)
20,000 2.6104 20,000 2.6104 10,000 2.3986 80, 430
MLC‐09‐11
93
Question #174
Answer: C
Let P denote the gross premium.
0
axIMP
0
P ax e t e t dt e 0.05t dt 20
E L
10
axIMP
e
P
0.03t 0.02t
e
dt e
0.0310 0.0210
e
0
e
0.03t 0.01t
e
dt
0
l e 0.5 e 0.5
23
0.05
0.04
E L 23 20 3
E L 3
15%
P
20
Question #175
Answer: C
1
A30:2
1000vq30 500v 2 1 q 30
2
1
1
1000
0.00153 500
0.99847 0.00161
1.06
1.06
2.15875
Initial fund 2.15875 1000 participants = 2158.75
Let Fn denote the size of Fund 1 at the end of year n.
F1 2158.75 1.07 1000 1309.86
F2 1309.86 1.065 500 895.00
Expected size of Fund 2 at end of year 2 = 0 (since the amount paid was the
single benefit premium). Difference is 895.
MLC‐09‐11
94
Question #176
Answer: C
2
Var Z E Z 2 E Z
E Z
t
t t
0
v b
0
E Z 2
px x t dt e0.08t e0.03t e0.02t 0.02 dt
0
0.02 2
0.02 e0.07t dt
7
0.07
0
vt bt
2
t
px x t dt
0
e
0.02 e0.12t x t dt 2
0
Var Z
1 2
7
6
2
12
0.05t 2
1
e0.02t 0.02 dt
6
1 4
0.08503
6 49
Question #177
Answer: C
0.1
8 311
1.1
0.1
1
6 511
1.1
we have Ax 1
From Ax 1 d ax
Ax 10
Ax Ax i
Ax
3
0.1
0.2861
11 ln 1.1
Ax 10
10V
5
0.1
0.4769
11 ln 1.1
Ax 10 P Ax ax 10
0.2861
0.4769
6
8
= 0.2623
There are many other equivalent formulas that could be used.
MLC‐09‐11
95
Question #178
Answer: C
100,000 e0.06t e0.001t 0.001dt
Regular death benefit
0
0.001
100,000
0.06 0.001
1639.34
Accidental death
100,000 e0.06t e0.001t 0.0002 dt
10
0
10
20 e0.061t dt
0
1 e0.61
20
149.72
0.061
Expected Present Value 1639.34 149.72 1789.06
Question #179
Answer: C
00
560 / 800 0.70
p61
01
p61
160 / 800 0.20
10
p61
0, once dead, stays dead
11
p61
1, once dead by cause 1, stays dead by cause 1
00
01
10
p61
p61
p11
p61
61 0.70 0.20 0 1 1.90
MLC‐09‐11
96
Question #180
Answer: C
The solution requires determining the element in row 2 column 3 of the matrix
obtained by multiplying the first three transition probability matrices. Only the
second row needs to be calculated. After one period, the row is [0.0 0.7 0.3]. For
the second period, multiply this row by the columns of Q1 . The result is [0.07 0.49
0.44]. For the third period, multiply this row by the columns of Q2 . The result is
[0.1645 0.3465 0.4890] with the final entry providing the answer.
An alternative is to enumerate the transitions that result in extinction. Label the
states S (sustainable), E (endangered) and X (extinct). The possible paths are:
EX – 0.3
EEX – 0.7(0.2) = 0.14
EEEX – 0.7(0.7)(0.1) = 0.049
Total = 0.489
Note that if the species is not extinct by time 3, it will never become extinct.
Question #181
Answer: B
Pr(dies in year 1) p 02 0.1
Pr(dies in year 2) p 00 p 02 p 01 p12 0.8(0.1) 0.1(0.2) 0.10
Pr(dies in year 3) p 00 p 00 p 02 p 00 p 01 p12 p 01 p11 p12 p 01 p10 p 02 0.095
EPV (benefits) 100, 000[0.9(0.1) 0.92 (0.10) 0.93 (0.095)] 24, 025.5
Pr(in State 0 at time 0) 1
Pr(in State 0 at time 1) p 00 0.8
Pr(in State 0 at time 2) p 00 p 00 p 01 p10 0.8(0.8) 0.1(0.1) 0.65
EPV ($1 of premium) 1 0.9(0.8) 0.92 (0.65) 2.2465
Benefit premium = 24,025.5/2.2465 = 10,695.
Question #182 - Removed
Answer: A
Question #183 - Removed
MLC‐09‐11
97
Question #184
Answer: B
1000 P45a45:15 a60:15 15 E45 1000 A45
1000
A45
a45 15 E45 a60 a60 15 E60 a75 15 E45 1000 A45
a45
201.20
14.1121 0.72988 0.5108111.1454
14.1121
11.1454 0.68756 0.39994 7.2170 0.72988 0.51081 201.20
where
15 E x
was evaluated as 5 Ex 10 Ex 5
14.2573 9.9568 3.4154 201.20
17.346
Question #185
Answer: A
1V
0 V 1 i 1000 1V 1V qx
2V
1V 1 i 2000 2V 2V qx 1 2000
1 i 1000q 1 i 2000q 2000
1.08 1000 0.1 1.08 2000 0.1 2000
x
x 1
1027.42
MLC‐09‐11
98
Question #186
Answer: A
Let Y be the present value of payments to 1 person.
Let S be the present value of the aggregate payments.
E Y 500 ax 500
Y Var Y
1 Ax 5572.68
d
500 2
1
d2
2
Ax Ax2 1791.96
S Y1 Y2 ... Y250
E S 250 E Y 1,393,170
S 250 Y 15.811388 Y 28,333
S 1,393,170 F 1,393,170
0.90 Pr S F Pr
28,333
28,333
F 1,393,170
Pr N 0,1
28,333
0.90 Pr N 0,1 1.28
F 1,393,170 1.28 28,333
=1.43 million
Question #187
Answer: A
q b1g 1 p b1g 1 e p b g j
41
41
bg
q41 1
41
bg
q41
1
2
l41 l40 d 40 d 40 1000 60 55 885
1
2
d 41 l41 d 41 l42 885 70 750 65
q41
1
65
q41 135
750
p41
885
750
1 1
q41
885
MLC‐09‐11
65
135
0.0766
99
Question #188
Answer: D
t
S0 (t ) 1
d
t
log S0 (t )
dt
t
ex
t
x
1
dt
1
x
x
0
1
new
new 2 old 1
e0new old
2 1
1
old
old
2 1 9
old 4
0new
4
Question #189
Answer: C
Constant force implies exponential lifetime
Var T E T E T
2
2
0.1
2
1
1
2 2 100
2
E min T ,10 t 0.1e .1t dt 10 0.1e.1t dt
10
0
te
10
.1t
10e
1
.1t 10
0
1
10e.1t
10e 10e 10 10e
10
1
10 1 e 1 6.3
MLC‐09‐11
100
Question #190
Answer: A
Gax:15
% premium amount for 15 years
100,000 Ax 0.08G 0.02Gax:15 x 5 5ax
Per policy for life
4669.95 11.35 51, 481.97 0.08 4669.95 0.02 11.35 4669.95 x 5 5ax
ax
1 Ax 1 0.5148197
16.66
d
0.02913
53,003.93 51, 481.97 1433.67 x 5 83.30
4.99 x 5
x 9.99
The % of premium expenses could equally well have been expressed as
0.10G 0.02G a x:14 .
The per policy expenses could also be expressed in terms of an annuityimmediate.
MLC‐09‐11
101
Question #191
Answer: D
For the density where Tx Ty ,
Pr Tx Ty
40
y
y 0 x 0
0.0005dxdy
40
y 0
50
y
0.0005 x dy
0
50
y 40
40
50
0
y 40
0.0005 ydy
40
x0 0.0005dxdy
y 40
0.0005 y 2
2
40
0
0.02 y
0.0005 x
40
dy
0
0.02 dy
50
40
0.40 + 0.20 = 0.60
For the overall density,
Pr Tx Ty 0.4 0 0.6 0.6 0.36
where the first 0.4 is the probability that Tx Ty and the first 0.6 is the probability
that Tx Ty .
Question #192
Answer: B
The conditional expected value of the annuity, given , is
1
.
0.01
The unconditional expected value is
0.02
1
0.01 0.02
ax 100
d 100 ln
40.5
0.01 0.01
0.01 0.01
100 is the constant density of on the interval 0.01,0.02 . If the density were not
constant, it would have to go inside the integral.
MLC‐09‐11
102
Question #193
Answer: E
Recall ex
x
2
ex:x ex ex ex:x
ex:x
t
t
dt
1
1
x y
x
0
Performing the integration we obtain
x
ex:x
3
2 x
ex:x
3
2 2 a
2 3a
3
2 7 a
3
3
2 3a
2
a k
3
3
3.5a a k 3.5a 3a
(i)
(ii)
k 5
The solution assumes that all lifetimes are independent.
Question #194
Answer: B
Although simultaneous death is impossible, the times of death are dependent as
the force of mortality increases after the first death. There are two ways for the
benefit to be paid. The first is to have (x) die prior to (y). That is, the transitions are
State 0 to State 2 to State 3. The EPV can be written with a double integral
0
e 0.04t t pxy00 x02t: y t e 0.04 r r px22t: y t x23t r: y t r drdt
0
0
0
e 0.04t e 0.12t 0.06 e 0.04 r e 0.10 r 0.10drdt
0.06 0.10
0.26786
0.16 0.14
By symmetry, the second case (State 0 to State 1 to State 3) has the same EPV.
Thus the total EPV is 10,000(0.26786+0.26786) = 5,357.
MLC‐09‐11
103
Question #195
Answer: E
Let
k
p0 Probability someone answers the first k problems correctly.
2
p0 0.8 0.64
4
p0 0.8 0.41
2
p0:0 2 p0 0.642 0.41
4
p0:0 0.41 0.168
2
p0:0 2 p0 2 p0 2 p0:0 0.87
4
p0:0 0.41 0.41 0.168 0.652
2
4
2
2
Prob(second child loses in round 3 or 4) = 2 p0:0 4 p0:0
= 0.87-0.652
= 0.218
Prob(second loses in round 3 or 4 second loses after round 2) =
2
p0:0 4 p0:0
2
=
p0:0
0.218
0.25
0.87
Question #196
Answer: E
If (40) dies before 70, he receives one payment of 10, and Y = 10. The probability
of this is (70 – 40)/(110 – 40) = 3/7
If (40) reaches 70 but dies before 100, he receives 2 payments.
Y 10 20v30 16.16637
The probability of this is also 3/7.
If (40) survives to 100, he receives 3 payments.
Y 10 20v30 30v60 19.01819
The probability of this is 1 – 3/7 – 3/7 = 1/7
E Y 3/ 7 10 3/ 7 16.16637 1/ 7 19.01819 13.93104
E Y 2 3/ 7 102 3/ 7 16.16637 2 1/ 7 19.018192 206.53515
Var Y E Y 2 E Y 12.46
Since everyone receives the first payment of 10, you could have ignored it in the
calculation.
MLC‐09‐11
2
104
Question #197
Answer: C
2
E Z v k 1bk 1
k 0
k
px qx k
v 300 0.02 v 2 350 0.98 0.04 v3 400 0.98 0.96 0.06
36.8
2
E Z 2 v k 1bk 1
k 0
2
k
px qx k
v 2 300 0.02 v 4 350 0.98 0.04 v 6 4002 0.98 0.96 0.06
2
2
11,773
Var Z E Z 2 E Z
2
11,773 36.82
10, 419
Question #198
Answer: A
Benefits +
3
0 Le 1000v
Expenses
0.20G 8 0.06G 2 v 0.06G 2 v 2
at G 41.20 and i 0.05,
0L
for K 2 770.59
MLC‐09‐11
105
– Premiums
G a3
Question #199
Answer: D
P 1000 P40
235 P 1 i 0.015 1000 255 255
[A]
255 P 1 i 0.020 1000 272 272
[B]
Subtract [A] from [B]
20 1 i 3.385 17
1 i
Plug into [A]
20.385
1.01925
20
235 P 1.01925 0.015 1000 255 255
235 P
255 11.175
1.01925
P 261.15 235 26.15
1000 25V
272 26.151.01925 0.0251000
1 0.025
286
MLC‐09‐11
106
Question #200
Answer: A
1.2
1
1
0.8
0.6
0.5
0.4
0.4
0.2
0
0
10
x
Give
n
0
s x
1
55 q35
20 55 q15
20 55 q15
55 q35
1
20
30
15
0.70
Linear
Interpolation
40
50
Give
n
25
60
35
0.50
0.48
Linear
Interpolation
s 90
0.16 32
1
0.6667
s 35
0.48 48
s 35 s 90 0.48 0.16 32
0.4571
s 15
0.70
70
0.4571
0.6856
0.6667
MLC‐09‐11
107
70
Give
n
75
0.4
80
90
0
100
Given
90
100
0.16
Linear
Interpolation
0
Alternatively,
20 55 q15
55 q35
20 p15 55 q35
55 q35
20 p15
s 35
s 15
0.48
0.70
0.6856
Question #201
Answer: A
S0 (80) 1 * e ^ 0.16*50 e ^ 0.08*50 0.00932555
2
S0 (81) 1 * e ^ 0.16*51 e ^ 0.08*51 0.008596664
2
p80 s 81 / s 80 0.008596664 / 0.00932555 0.9218
q80 1 0.9218 0.078
Alternatively (and equivalent to the above)
For non-smokers, px e0.08 0.923116
50
px 0.018316
For smokers, px e0.16 0.852144
50 p x 0.000335
So the probability of dying at 80, weighted by the probability of surviving to 80, is
0.018316 1 0.923116 0.000335 1 0.852144
= 0.078
0.018316 0.000335
MLC‐09‐11
108
Question #202
Answer: B
x
40
41
42
lx
2000
1920
1840
because 2000 20 60 1920 ;
d x
20
30
40
d x
60
50
1
2
1920 30 50 1840
Let premium = P
1840 2
2000 1920
EPV premiums =
v
v P 2.749 P
2000
2000 2000
30 2
40 3
20
EPV benefits = 1000
v
v
v 40.41
2000
2000
2000
40.41
P
14.7
2.749
MLC‐09‐11
109
Question #203
Answer: A
10
a30 e0.08t e0.05dt 10 Ex e0.08t e0.08t dt
0
10 0.13t
e
0
dt e
0
1.3
0.16
0 e
e0.13t 10
e0.16t
e1.3
0.13 0
0.16
1.3
1.3
e
1
e
0.13 0.13 0.16
= 7.2992
dt
0
A30 e0.08t e0.05t 0.05 dt e1.3 e0.16t 0.08 dt
10
0
0
1
e
e
0.05
0.08
0.16
0.13 0.13
0.41606
1.3
1.3
= P A30
A30 0.41606
0.057
a30 7.29923
1
1
a40
0.08 0.08 0.16
A40 1 a40
1 0.08 / 0.16 0.5
10V
A30 A40 P A30 a40
0.5
0.057 0.14375
0.16
Question #204
Answer: C
Let T be the future lifetime of Pat, and [T] denote the greatest integer in T. ([T] is
the same as K, the curtate future lifetime).
L 100,000 vT 1600 a T
1
100,000vT 1600 a10
1600 a10
Minimum is 1600 a10
12,973
MLC‐09‐11
0 T 10
10 t 20
20<t
when evaluated at i = 0.05
110
Question #205 - Removed
Question #206
Answer: A
Pax:3 EPV (stunt deaths)
4 /1.08 5 / 1.08 2 6 / 1.08 3
2500 2486 /1.08 2466 / 1.082
P
500000
2500
2500
P 2.77 2550.68
p 921
Question #207
Answer: D
x2
1
dx
s x dx 30 10,000
30
2
s 30
30
1
100
x3 80
x
30,000 30
0.91
33.833
0.91
37.18
80
e30:50
80
Question #208
Answer: B
A60 v p60 A61 q60
1/1.06 0.98 0.440 0.02
0.42566
a60 1 A60 / d
1 0.42566 / 0.06 /1.06
10.147
1000 10V 1000 A60 1000 P50 a60
425.66 10.147 25
172
MLC‐09‐11
111
Question #209
Answer: E
Let Y65 present value random variable for an annuity due of one on a single life
age 65.
Thus E Y65 a65
Let Y75 present value random variable for an annuity due of one on a single life
age 75.
Thus E Y75 a75
E (X) 50 2 a65 30 1 a75
100 9.8969 30 7.217 1206.20
Var (X) 50 22Var Y65 30 1 Var Y75 200 13.2996 30 11.5339 3005.94
2
where Var Y65
and Var Y75
1
d2
1
d2
2
2
2
A65 A65
2
A75 A75
1
0.05660
1
0.05660
2
2
0.23603 0.4398 2 13.2996
0.38681 0.59149 2 11.5339
95th percentile E X 1.645 Var X
1206.20 1.645 54.826
1296.39
Question #210
Answer: C
a e t e t dt
0
EPV 50, 000
1
0.5
1
1
0.5 d 100, 000 ln 1 ln 0.5
1
0.045 1
100,000 ln
0.045 0.5
65, 099
Question #211 - Removed
Question #212 - Removed
MLC‐09‐11
112
Question #213 - Removed
Question #214
Answer: A
Let be the benefit premium at issue.
10,000
A45:20
a45:20
0.20120 0.25634 0.43980 0.25634
10,000
14.1121 0.25634 9.8969
297.88
The expected prospective loss at age 60 is
10,00015V45:20 10,000 A60:5 297.88 a60:5
10,000 0.7543 297.88 4.3407
6250
1
where A60:5
0.36913 0.68756 0.4398 0.06674
A60:51 0.68756
A60:5 0.06674 0.68756 0.7543
a60:5 11.1454 0.68756 9.8969 4.3407
1
After the change, expected prospective loss = 10,000 A60:5
(Reduced Amount) A60:51
Since the expected prospective loss is the same
6250 10,000 0.06674 Reduced Amount 0.68756
Reduced Amount = 8119
MLC‐09‐11
113
Question #215
Answer: D
Ax Ax1:5 5 Ex Ax15 :7 12 Ex Ax 12
where
5 0.04 0.02
0.7408
5 Ex e
0.04
Ax1:5
1 0.7408 0.1728
0.04 0.02
7 0.05 0.02
0.6126
7 Ex 5 e
0.05
Ax 1 5 :7
1 0.6126 0.2767
0.05 0.02
12 E x 5 E x 7 E x 5 0.7408 0.6126 0.4538
0.05
Ax 12
0.625
0.05 0.03
Ax 0.1728 0.7408 0.2767 0.4538 0.625
= 0.6614
Question #216
Answer: A
EPV of Accidental death benefit and related settlement expense =
0.004
89.36
2000 1.05
0.004 0.04 0.05
0.04
EPV of other DB and related settlement expense = 1000 1.05
446.81
0.094
EPV of Initial expense = 50
3
EPV of Maintenance expense =
31.91
0.094
100
EPV of future premiums
1063.83
0.094
EPV of 0 L 89.36 446.81 50 31.91 1063.83
445.75
MLC‐09‐11
114
Question #217
Answer: C
One approach is to enumerate all the paths from state 1 to state 3 and evaluate
their probabilities. The paths are:
113 – (0.8)(0.05) = 0.04
123 – (0.15)(0.05) = 0.0075
133 – (0.05)(1) = 0.05
The sum is 0.0975.
Alternatively, the required probability is in row 1 column 3 of the square of the
transition probability matrix. Multiplying the first row of the matrix by each column
produces the first row of the square, [0.6475 0.255 0.0975]. While only the third
calculation is required, doing all three provides a check as the numbers must sum
to one.
The number of the 50 members who will be in state 3 has a binomial distribution,
so the variance is 50(0.0975)(0.9025) = 4.40.
MLC‐09‐11
115
Question #218
Answer: C
0.6 0.3 0.1
Q0 0
0
1
0
0
1
0.36 0.18 0.46
Q0 Q1 0
0
1
0
0
1
0 0.108 0.892
Q0 Q1 Q2 0
0
1
0
0
1
Note that after four transitions, everyone must be in state 2. For premiums, the
probability is the sum of the first two entries in row 1 (with probability 1 that a
premium is paid at time 0). Then,
APV Premiums 1 0.9v 0.54v 2 0.108v3 2.35 .
For benefits, the probabilities are the second entry in row 1. Then,
APV Benefits 4 0.3v 0.18v 2 0.108v3 2.01
Difference = 2.35 – 2.01 = 0.34
Note that only the first row of each of the products needs to be calculated.
It is also possible to enumerate the transitions that produce the required events,
though for this problem the list is relatively long:
Premium at time 1:
00 (0.6)
01 (0.3)
Total = 0.9
Premium at time 2:
000 (0.6)(0.6) = 0.36
001 (0.6)(0.3) = 0.18
Total = 0.54
Premium at time 3:
0001 (0.6)(0.6)(0.3) = 0.108
Benefit at time 1:
01 (0.3)
Benefit at time 2:
001 (0.6)(0.3) = 0.18
Benefit at time 3:
0001 (0.6)(0.6)(0.3) = 0.108
MLC‐09‐11
116
Question #219
Answer: E
0.25 1.5 q x
0.25
px 1.75 px
Let be the force of mortality in year 1, so 3 is the force of mortality in year 2.
Probability of surviving 2 years is 10%
0.10 px px 1 e e3 e4
ln 0.1
0.5756
4
0.25
1
px e 4 0.5756 0.8660
1.75
px px 0.75 px 1 e e
1.5 q x 0.25
0.251.5 q x
0.25
px
0.25
3
3
4
e
13
0.5756
4
0.1540
px 1.75 px 0.866 0.154
0.82
0.866
0.25 p x
Question #220
Answer: C
500
1
500(110 x) 110 x
2
1 xS xS
2
110 x
xNS
lxS l0S 110 x [see note below]
2
Thus
S
t p20
lS
90 t
20St
902
l20
NS
t p25
MLC‐09‐11
2
NS
l25
85 t
t
NS
85
l25
117
e20:25
85
0 t
85
0
p20:25dt
S
NS
t p20 t p25 dt
85
0
90 t 2 85 t dt
90 2 85
85
1
2
90 t 90 t 5 dt
688,500 0
1
85 90 t 3 dt 5 85 90 t 2 dt
0
688,500 0
85
90 t 4 5 90 t 3
1
688,500
4
3
0
1
156.25 208.33 16, 402,500 1, 215,000
688,500
= 22.1
[There are other ways to evaluate the integral, leading to the same result].
The S0 ( x) form is derived as S0 ( x) e
x 2
dt
0 110t
The l x form is equivalent.
Question #221
Answer: B
a30:20 a30:10 10 E30 a40:10
15.0364 8.7201 10 E30 8.6602
15.0364 8.7201 / 8.6602 0.72935
Expected present value (EPV) of benefits =
1
1
1000 A40:10
2000 10 E30 A50:10
10 E30
16.66 2 0.72935 32.61 64.23
EPV of premiums = a30:10 2 0.72935 a40:10
8.7201 2 0.72935 8.6602
21.3527
64.23/ 21.3527 3.01
MLC‐09‐11
118
e
2ln 110t
x
0
110 x
110
2
Question #222
Answer: A
15V
P25
s25:15
1
P25:15
P25:15
1
A25:15
15 E25
P25:151
(this is the retrospective reserve calculation)
0.05332 0.05107
0.00225
0.05107 P25:151
1
A25:15
15 E25
a25:15
15 E25
a25:15
1
/ a25:15
A25:15
15 E25
1
A25:15
/ a25:15
1
s25:15
0.00225
0.04406
0.05107
0.01128
0.22087
0.05107
25, 000 15V 25, 000 0.22087 0.04406 25, 000 0.17681 4420
P25
s25:15
There are other ways of getting to the answer, for example writing
A: the retrospective reserve formula for 15V .
B: the retrospective reserve formula forthe 15th benefit reserve for a 15-year
term insurance issued to (25), which = 0
Subtract B from A to get
1
P25 P25:15
s25:15 15V
Question #223
Answer: C
ILT:
We have p70 6,396,609 / 6,616,155 0.96682
2 p70 6,164,663/ 6,616,155 0.93176
e70:2 0.96682 0.93176 1.89858
CF:
0.93176 2 p70 e2 0.03534
Hence e70:2 p70 2 p71 e e2 1.89704
DM: Since l70 and 2 p70 for the DM model equal the ILT, therefore l72 for the DM
model
MLC‐09‐11
119
also equals the ILT. For DM we have l70 l71 l71 l72 l71
DM
6,390, 409
Hence e70:2 6,390, 409 / 6,616,155 6,164,663 / 6,616,155 1.89763
So the correct order is CF < DM < ILT
You could also work with p’s instead of l’s. For example, with the ILT,
p70 1 0.03318 0.96682
2
p70 0.96682 1 0.03626 0.93176
Note also, since e70:2 p70 2 p70 , and 2 p70 is the same for all three, you could just
order p70 .
Question #224
Answer: D
l60
1000
l61
1000 0.99 0.97 0.90 864.27
d60
1000 864.27 135.73
d60
135.73
3
ln 0.9
ln 0.99 0.97 0.9
135.73
0.1054
98.05
0.1459
l62
864.27 0.987 0.95 0.80 648.31
d61
864.27 648.31 215.96
d61
215.96
3
ln 0.80
ln 0.987 0.95 0.80
215.96
d 61
98.05 167.58 265.63
So d 60
3
3
MLC‐09‐11
120
0.2231
167.58
0.2875
Question #225
Answer: B
t
t
p40 e0.05t
p50 60 t / 60
50t 1/ 60 t
10
0
t
p40:50 50t dt
10 e
10
0.05t
0
1 e0.05t
dt
60
60 0.05 0
20
1 e 0.5 0.13115
60
Question #226
Answer: A
Actual payment (in millions)
q3 1
1 q3
3
5
2 6.860
1.1 1.1
0.30
0.5
0.60
0.30 0.10
0.333
0.60
0.5 0.333
Expected payment = 10
7.298
2
1.1 1.1
Ratio
6.860
94%
7.298
Question #227
Answer: E
At duration 1
Kx
1
>1
1L
v Px1:2
Prob
qx 1
0 Px1:2
1 qx 1
So Var 1 L v 2 qx 1 1 qx 1 0.1296
MLC‐09‐11
121
That really short formula takes advantage of
Var a X b a 2Var ( X ) , if a and b are constants.
Here a = v; b Px1:2 ; X is binomial with p X 1 qx 1 .
Alternatively, evaluate Px1:2 0.1303
0.9 0.1303 0.7697 if K x 1
1 L 0 0.1303 0.1303 if K x 1
1L
E 1 L 0.2 0.7697 0.8 0.1303 0.0497
E 1 L2 0.2 0.7697 0.8 0.1303 0.1320
2
2
Var 1 L 0.1320 0.0497 0.1295
2
Question #228
Answer: C
P Ax
Ax
Ax
Ax 0.1 13
0.05
ax 1 Ax 1 Ax
1 13
P Ax
Var L 1
1 0.05
1
5 0.10
2
2
2
2
2
Ax Ax2
Ax Ax2
Ax Ax2 0.08888
Var L 1
2
2
Ax Ax2
16
1
0.08888
45 0.1
2
1
4
0.1
0.1
2
MLC‐09‐11
122
Question #229
Answer: E
Seek g such that Pr aT 40 g 0.25
aT is a strictly increasing function of T.
Pr T 40 60 0.25 since
Pr aT
40
60
p40
100 40
0.25
120 40
a60 0.25
g a60 19.00
Question 230
Answer: B
0.05
A51:9 1 da51:9 1
7.1 0.6619
1.05
11V
2000 0.6619 100 7.1 613.80
10V P 1.05 11V q50 2000 11V
10V 100 1.05 613.80 0.011 2000 613.80
10V
499.09
where q50 0.00110 0.001 0.011
Alternatively, you could have used recursion to calculate A50:10 from A51:9 , then
a50:10
from A50:10 , and used the prospective reserve formula for 10V .
MLC‐09‐11
123
Question #231
Answer: C
1000 A81 1000 A80 1 i q80 1000 A81
689.52 679.80 1.06 q80 1000 689.52
q80
720.59 689.52
0.10
310.48
q80 0.5q80 0.05
1000 A80 1000vq80 vp80 1000 A81
1000
0.05
0.95
689.52
665.14
1.06
1.06
Question #232
Answer: D
lx
776
752
d x
8
8
42
43
d x
16
16
1
2
1
2
l42
and l43
came from lx 1 lx d x d x
2000 8v 8v 2 1000 16v 16v 2
EPV Benefits =
776
76.40
776 752v
EPV Premiums 34
34 1.92 = 65.28
776
2V
76.40 65.28 11.12
MLC‐09‐11
124
Question #233
Answer: B
pxx 1 qxx 0.96
px 0.96 0.9798
px 1:x 1 1 qx 1:x 1 0.99
px 1 0.99 0.995
ax 1 vpx v 2 2 px 1
0.9798 0.9798 0.995
1.05
1.052
2.8174
0.96 0.96 0.99
2.7763
1.05
1.052
EPV = 2000 ax 2000 ax 6000 axx
axx 1 vpxx v 2 2 pxx 1
4000 2.8174 6000 2.7763
27,927
Notes: The solution assumes that the future lifetimes are identically distributed.
The precise description of the benefit would be a special 3-year temporary life
annuity-due.
MLC‐09‐11
125
Question #234
Answer: B
t
1
1
1
px x t qx 0.20
t
2
2
px 1 tqx 1 0.08t
t
3
3
px 1 tqx 1 0.125t
qx
1
1
0t
1
1
2
3
1
1
px x t dt t px t px t px xt dt
0
1 0.08t 1 0.125t 0.20 dt
1
0
1
0.2 1 0.205t 0.01t 2 dt
0
1
0.205t 2 0.01t 3
0.2 t
2
3 0
0.01
0.2 1 0.1025
0.1802
3
MLC‐09‐11
126
Question #235
Answer: B
1
d
w
G 0.1G 1.50 1 1.06 1000q40
2.93 q40
AS
1 q40
q40
d
w
0.9G 1.50 1.06 1000 0.00278 2.93 0.2
1 0.00278 0.2
0.954G 1.59 2.78 0.59
0.79722
1.197G 6.22
2
d
w
1 AS G 0.1G 1.50 1 1.06 1000q41 2 CV q41
AS
1 q41
q41
d
w
1.197G 6.22 G 0.1G 1.50 1.06 1000 0.00298 2 CV 0
1 0.00298 0
2.097G 7.72 1.06 2.98
0.99702
2.229G 11.20
2.229G 11.20 24
G 15.8
MLC‐09‐11
127
Question #236
Answer: A
5
1
2
4 AS G 1 c4 e4 1 i 1000q x 4 5 CV q x 4
AS
1 qx4 qx 4
1
2
396.63 281.77 1 0.05 7 1 i 90 572.12 0.26
1 0.09 0.26
657.311 i 90 148.75
0.65
694.50
657.311 i 90 148.75 0.65 694.50
690.18
1.05
657.31
i 0.05
1 i
Question #237 - Removed
Question #238 – Removed
MLC‐09‐11
128
Question #239
Answer: B
Let P denote the annual premium
The EPV of benefits is 25, 000 Ax:20 25, 000(0.4058) 10,145 .
The EPV of premiums is Pax:20 12.522 P
The EPV of expenses is
25, 000
(15 3) 3ax:20
1, 000
0.20 P 0.6261P 194.025 12 37.566 0.8261P 243.591
0.25 0.05 P 0.05 P ax:20
2.00 0.50 0.50 ax:20
Equivalence principle:
12.522 P 10,145 0.8261 P 243.591
10,389.591
P
12.522 0.8261
888.31
Question #240
Answer: D
Let G denote the premium.
Expected present value (EPV) of benefits = 1000A40:20
EPV of premiums = G a40:10
EPV of expenses 0.04 0.25 G 10 0.04 0.05 G a40:9 5a40:19
0.29G 10 0.09G a40:9 5a40:19
0.2G 10 0.09G a40:10 5a40:19
(The above step is getting an a40:10 term since all the answer choices have one. It
could equally well have been done later on).
MLC‐09‐11
129
Equivalence principle:
G a40:10 1000 A40:20 0.2G 10 0.09G a40:10 5 a40:19
G a40:10 0.2 0.09 a40:10 1000 A40:20 10 5 a40:19
G
1000 A40:20 10 5 a40:19
0.91a40:10 0.2
Question #241 - Removed
Question #242
Answer: C
11
d
w
10 AS G c10 G e10 1 i 10,000q x 10 11 CV q x 10
AS
1 qx10 qx10
d
w
1600 200 0.04 200 70 1.05 10,000 0.02 1700 0.18
1 0.02 0.18
1302.1
0.8
1627.63
MLC‐09‐11
130
Question #243
Answer: E
The benefit reserve at the end of year 9 is the certain payment of the benefit one
year from now, less the premium paid at time 9. Thus, it is 10,000v – 76.87.
The gross premium reserve adds expenses paid at the beginning of the tenth year
and subtracts the gross premium rather than the benefit premium. Thus it is
10,000v + 5 + 0.1G – G where G is the gross premium.
Then,
10, 000v 76.87 (10, 000v 5 0.9G ) 1.67
0.9G 81.87 1.67
0.9G 83.54
G 92.82
Question #244
Answer: C
4 AS
3 AS G c4G e4 1 i 1000qxd3 4 CVqxw3
1 qx 3 qx 3
d
w
Plugging in the given values:
4 AS
25.22 30 0.02 30 5 1.05 1000 0.013 75 0.05
1 0.013 0.05
35.351
0.937
= 37.73
MLC‐09‐11
131
With higher expenses and withdrawals:
4 AS
revised
25.22 30 1.2 0.02 30 5 1.05 1000 0.013 75 1.2 0.05
1 0.013 1.2 0.05
48.51.05 13 4.5
0.927
33.425
0.927
= 36.06
4 AS
4 AS revised 37.73 36.06
= 1.67
Question #245
Answer: E
Let G denote the gross premium.
EPV (expected present value) of benefits 100010 20 A30 .
EPV of premiums Ga30:5 .
EPV of expenses 0.05 0.25 G 20 first year
0.05 0.10 G 10 a 30:4 years 2-5
10 5 a35:4 years 6-10 (there is no premium)
0.30G 0.15G a30:4 20 10 a30:4 10 5 a 30:5
0.15G 0.15Ga30:5 20 10 a30:9
(The step above is motivated by the form of the answer. You could equally well put it that
form later).
Equivalence principle:
Ga30:5 100010 20 A30 0.15G 0.15G a30:5 20 10 a30:9
G
MLC‐09‐11
1000
10 20 A30
20 10 a 30:9
20 10 a30:9
1 0.15 a30:5 0.15
1000
10 20 A30
0.85 a30:5 0.15
132
Question #246
Answer: E
Let G denote the gross premium
EPV (expected present value) of benefits
0.1 3000 v 0.9 0.2 2000 v 2 0.9 0.8 1000v 2
300 360
720
1286.98
2
1.04 1.04 1.042
EPV of premium = G
EPV of expenses 0.02G 0.03G 15 0.9 2 v
0.05G 16.73
Equivalence principle: G 1286.98 0.05G 16.73
1303.71
G
1372.33
1 0.05
Question #247
Answer: C
EPV (expected present value) of benefits = 3499 (given)
EPV of premiums G 0.9 G v
G
0.9G
1.8571G
1.05
EPV of expenses, except settlement expenses,
25 4.5 10 0.2 G 0.9 10 1.5 10 0.1G v 0.9 0.85 10 1.5 10 v 2
0.9 25 0.1G 0.765 25
1.05
1.052
=108.78+0.2857G
70 0.2G
MLC‐09‐11
133
Settlement expenses are 20 110 30 , payable at the same time the death benefit is
paid.
30
So EPV of settlement expenses
EPV of benefits
10,000
0.003 3499
10.50
Equivalence principle:
1.8571G 3499 108.78 0.2857G 10.50
3618.28
G
2302.59
1.8571 0.2857
Question #248
Answer: D
a50:20 a50 20 E50 a70
13.2668 0.23047 8.5693
11.2918
0.06
A50:20 1 d a50:20 1
11.2918
1.06
0.36084
Expected present value (EPV) of benefits 10,000A50:20
3608.40
EPV of premiums 495 a50:20
5589.44
EPV of expenses 0.35 495 20 15 10 0.05 495 5 1.50 10 a50:19
343.25 44.75 11.2918 1
803.81
EPV of amounts available for profit and contingencies
= EPV premium – EPV benefits – APV expenses
= 5589.44 – 3608.40 – 803.81
= 1177.23
MLC‐09‐11
134
Question #249
Answer: B
1
1
0
0
q1xy t pxy x t dt t px t p y x t dt
1
qx e 0.25t dt (under UDD, t px x t qx )
0
1
0.125 qx (4e0.25t ) qx (4)(1 e 0.25 ) 0.8848qx
0
qx 0.1413
Question #250
Answer: C
2
p[11x ]1 p[11x ]1 p[11x ] 2 p[12x ]1 p[21x ] 2
0.1
0.1
0.1
0.2
0.7
0.7
0.3
0.4
2
3
2
3
0.75(0.7333) 0.25(0.3333) 0.6333
Note that Anne might have changed states many times during each year, but the
annual transition probabilities incorporate those possibilities.
Questions #251-260 – Removed
Question #261
Answer: A
The insurance is payable on the death of (y) provided (x) is already dead.
E ( Z ) Axy2 e t t qx t p y y t dt
0
e
0.06 t
0
(1 e0.07 t )e 0.09t 0.09dt
0.09 e 0.15t e0.22t dt
0
1
1
0.09
0.191
0.15 0.22
MLC‐09‐11
135
Question #262
Answer: C
t
px
95 x t
1
, x t
,
95 x
95 x t
t
p y e t
Pr(x dies within n years and before y)
n
0 t
n
0
px t p y x t dt
n
95 x t t
1
1
1 e n
t
e
dt
e
dt
95 x
95 x t
95 x 0
(95 x)
Question #263
Answer: A
0.25
2
q30.5:40.5
0.25
0
t
0.25
0.4
0.6t
dt
1 0.5(0.4) 1 0.5(0.6)
0
p30.5 30.5t t q40.5 dt
0.4(0.6) t 2
0.8(0.7) 2
0.25
0.0134
0
Question #264 – Removed
Question #265
Answer: D
t
2
px exp 5rdr e 2.5t
0
t
0.5t 2
t p y exp 0 rdr e
t
qx1: y t p y t px x t dt e0.5t e2.5t 5tdt 5 e3t tdt
1
1
0
0
2
2
1
0
1
5 2
5
e 3t (1 e 3 ) 0.7918
6
6
0
MLC‐09‐11
136
2
Question #266
Answer: B
5
G
5
0
t2
1 t
1
dt
30 25
30(25)(2) 0 60
H 5 p80:85 10 p80:85
GH
25 20 20 15 200 4
30 25 30 25 750 15
1 16 17
0.2833
60 60 60
Question #267
Answer: D
t
t
S0 (t ) exp (80 x) 0.5 dx exp 2(80 x)0.5 exp 2((80 t )0.5 800.5 )
0
0
F S0 (10.5) exp 2(69.50.5 800.5 ) 0.29665
S0 (10) 0.31495
S0 (11) 0.27935
G S0 (10.5)exp [0.31495(0.27935)]0.5 0.29662
F G 0.00003
Question #268
Answer: A
4
4
E ( Z ) 500 0.2(1 0.25t )dt 1000 0.25(0.2t )dt
0
0
500(0.2) t 0.125t 2 1000(0.25) (0.1t 2 )
4
4
0
0
100(4 2) 250(1.6) 600
Question #269
Answer: A
10
q30:50 10 q30 10 q50 (1 e0.5 )(1 e0.5 ) 0.1548
MLC‐09‐11
137
Question #270
Answer: C
e30:50 e30 e50 e30:50
e30 e50 e0.05t dt 20
0
e30:50 e 0.10t dt 10
0
e30:50 20 20 10 30
Question #271
Answer: B
0
0
1
A30:50
e t t p30 t p50 30 t dt e 0.03t e 0.05t e 0.05t 0.05dt
0.05
0.3846
0.13
Question #272
Answer: B
T30:50 has the exponential distribution with parameter 0.05 + 0.05 = 0.10 and so its
mean is 10 and its variance is 100.
Question #273
Answer: D
Cov[T30:50 , T30:50 ] e30 e30:50 e50 e30:50 (20 10)(20 10) 100
See solution to Question #270 for the individual values.
Question #274
Answer: E
V ( 2V 3 )(1 i3 ) qx 2 (b3 3V )
3
96 (84 18)(1.07) qx 2 (240 96)
qx 2 13.14 /144 0.09125
MLC‐09‐11
138
Question #275
Answer: A
( 3V 4 )(1 i4 ) qx 3b4 (96 24)(1.06) 0.101(360)
101.05
px 3
0.899
V
4
Question #276
Answer: D
Under UDD:
0.5qx 3
0.5(0.101)
0.0532
0.5 q x 3.5
1 0.5qx 3 1 0.5(0.101)
Question #277
Answer: E
V v 0.5 0.5 p3.5 4V v 0.5 0.5 q3.5b4
3.5
1.060.5 (0.9468)(101.05) 1.060.5 (0.0532)(360)
111.53
Question #278
Answer: D
1 10 p30:40 1 10 p30 10 p40 1
60 50 2
70 60 7
Question #279
Answer: A
10
2
q30:40
10
0
t
p30 30t (1 t p40 )dt
10
0
1 t
50
0.0119
dt
70 60
70(60)
Question #280
Answer: A
20
10 t
p30 30t t q40 dt
20
10
20
10 t
p40 40t t q30 dt
20 1 t
1 t
1 400 100 1 400 100
dt
dt
0.0714
10
70 60
60 70
70 2(60)
60 2(70)
MLC‐09‐11
139
Question #281
Answer: C
140, 000
30
t
0
p30 30t t p40 dt 180, 000
30
0
t
p40 40t t p30 dt
30 1 70 t
1 60 t
dt 180, 000
dt
0 70 60
0 60 70
1 602 302
1 702 402
140, 000
180, 000
115, 714
70 2(60)
60 2(70)
140, 000
30
Question #282
Answer: B
P
20
0
t
p30 t p40 dt P
20
0
70 t 60 t
P 20
dt
4200 130t t 2 dt
0
70 60
4200
P
[4200(20) 130(200) 8000 / 3] 14.444 P
4200
Question #283
Answer: A
Note that this is the same as Question 33, but using multi-state notation rather
than multiple-decrement notation.
The only way to be in State 2 one year from now is to stay in State 0 and then
make a single transition to State 2 during the year.
1
1
1
p t p dt e
02
x
0
00
x
MLC‐09‐11
02
x t
0
(0.3 0.5 0.7) t
e 1.5t
1
(1 e 1.5 ) 0.259
0.5dt 0.5
1.5 0 3
140
Question #284
Answer: C
m 1 m2 1
( 80 ) . Then,
2m 12m 2
2 1 22 1
4 1 42 1
(4)
a80(2) a80
a
a80
(
)
( 80 )
80
80
2(2) 12(2) 2
2(4) 12(4) 2
8.29340 8.16715 (1/ 4) (3 / 8) [(3 / 48) (15 /192)]( 80 )
(m)
Woolhouse’s formula to three terms is a80
a80
0.00125 0.015625( 80 )
80 0.08
(2)
a80 a80
1/ 4 (3 / 48)(0.08) 8.5484.
The answer is:
(12)
a80
a80
12 1 122 1
11 143
( 80 ) 8.54840
(0.08) 8.08345.
2
2(12) 12(12)
24 1728
Question #285
Answer: B
1
| a70:2 v 2 2 p70 v3 3 p70
B x t
c ( c 1)
At ln c
t
p70 e
2
p70 e 0.0002(2) (0.9754483)1.211 0.9943956
3
p70 e0.0002(3) (0.9754483)1.3311 0.9912108
1
e
e
0.000003 70
t
1.1 (1.1 1)
0.0002 t ln(1.1)
e
e0.0002t (0.9754483)1.1 1
t
| a70:2 0.9943956 /1.052 0.9912108 /1.053 1.7582.
Question #286
Answer: E
1
A50:2
vq50 v 2 p50 q51
px e
B x
c ( c 1)
ln c
e
0.000005 x
1.2 (0.2)
ln(1.2)
e 0.0000054848(1.2)
50
p50 0.951311
p51 0.941861
1
A50:2
0.048689 /1.03 0.951311(0.058139) /1.032 0.09940.
MLC‐09‐11
141
Question #287
Answer: E
The reserve at the end of year 2 is 10, 000vq52 3 where 3 is the benefit premium in
year 3. From the equivalence principle at time zero:
10, 000(vq50 v 2 p50 q51 v 3 p50 p51q52 ) 0.5 3 0.5 3vp50 3v 2 p50 p51
0.95 0.95(0.94)
0.05 0.95(0.06) 0.95(0.94)(0.07)
10, 000
0.5 0.5
3
2
3
1.04
1.04
1.04
1.042
1.04
1563.4779 1.78236 3
3 877.1953
V 10, 000(0.7) /1.04 877.1953 204.12
2
Question #288
Answer: C
The benefit premium in year one is vq50 . By the equivalence principle:
10, 000(vq50 v 2 p50 q51 v 3 p50 p51q52 ) 10, 000vq50 (vp50 v 2 p50 p51 )
0.95(0.06) 0.95(0.94)(0.07) 0.95 0.95(0.94)
10, 000
2
1.043
1.042
1.04
1.04
1082.708665 1.739090
622.5719
2V 10, 000(0.07) /1.04 622.5719 50.51.
Question #289
Answer: E
t-th
year
0*
1
2
3
V
P
E
I
EDB
E tV
0
0
1000
0
0
0
-1000 1.000
0
700
700
14500
14500
14500
100
100
100
864
906
906
14000
15000
16000
690.2
689.5
0
573.8 1.000
316.5 0.986
6 0.971
t 1
Pr
t 1
px
P
1000.0
573.8
312.1
5.8
NPV 1000 573.8v 312.1v 2 5.8v 3 216.08 using a 10% discount rate.
*The 1000 at time 0 is neither accumulated nor discounted. The value is treated
as occurring at the end of time 0 and not as occurring at the beginning of year 1.
MLC‐09‐11
142
Question #290
Answer: C
NPV 140v 0.95(135) p67 v 2 (0.95) 2 (130) 2 p67 v 3 314.09 at a 10% discount rate.
Question #291
Answer: B
Solution
Pr (6, 000 700 10)(1.06)1/12 0.002(200, 000) 0.0015(50, 000 15, 000)
0.9965(6, 200) 46.7.
Question #292
Answer: C
245 p40 274 and 300 2 p40 395
Present value of premium:
1000[1 (245 / 274)(1/1.12) (300 / 395)(1/1.122 )] 2403.821.
Present value of profit:
400 150 / 1.12 245 / 1.12 2 300 / 1.123 142.775.
PV Profit / PV premium = 5.94%
Question #293
Answer: B
P[1 0.97(0.98624) 0.92(0.98624)(0.98499)]
100, 000[0.97(0.01376) 0.92(0.98264)(0.01501) 0.87(0.98264)(0.98499)(0.01638)]
P 1431.74.
MLC‐09‐11
143
Question #294
Answer: A
Let IF equal 1 if the index drops below its current level in the next year and equals
0 otherwise.
E[ X N | I F 1] N (1000)vqx 48.54 N
E[ X N | I F 0] 0
E[ X N ] 0.1(48.54 N ) 0 4.854 N
Var[ X N | I F 1] (1000v) 2 Nqx (1 qx ) 44, 773.31N
Var[ X N | I F 0] 0
E[Var ( X N | I F )] 0.1(44, 773.31N ) 0 4, 477.33 N
Var[ E ( X N | I F )] 0.1(48.54 N ) 2 0 (4.854 N ) 2 212.05 N 2
Var[ X N ] 4, 477.33 N 212.05 N 2
Var ( X 10 )
10
lim
25.69
Var ( X N )
N
lim
N
N
25.69 14.56 11.13.
4, 477.33 N 212.05 N 2
212.05 14.56
N
Question #295
Answer: E
The actuarial present value of the death benefit is
S62 (4)d 62(2) v 0.5 S63 (4)d 63(2) v1.5 S64 (4)d 64(2) v 2.5
100, 000
S62l62
100, 000
3.589(4)(213)v 0.5 3.643(4)(214)v1.5 3.698(4)(215)v 2.5
3.589(52,860)
4,585.
MLC‐09‐11
144
Question #296
Answer: A
Policy 1:
AV371 [ AV36 G E (100, 000 AV371 ) 1/12 q63 /1.004](1.004)
( AV36 G E )1.004 100, 000 1/12 q63 AV371 1/12 q63
[( AV36 G E )1.004 100, 000 1/12 q63 ] / (1 1/12 q63 )
Policy 2
AV372 [ AV36 G E 100, 000 1/12 q63 /1.004](1.004)
( AV36 G E )1.004 100, 000 1/12 q63
Because the starting account value, G and E are identical for both policies:
AV361 / AV362 1/ (1 1/12 q63 ) 1 / [1 (1 / 12)(0.01788)] 1.0015.
Question #297
Answer: E
The recursive formula for the account values is:
AVk 1 ( AVk 0.95G 50)1.06 (100, 000 AVk 1 )q50 k .
This is identical to the recursive formula for benefit reserves for a 20-year term
insurance where the benefit premium is 0.95G – 50. Because the benefit reserve
is zero after 20 years, using this premium will ensure that the account value is zero
after 20 years. Therefore,
0.95G 50 100, 000
1
A50:20
A E A
0.24905 0.23047(0.51495)
50 20 50 70 100, 000
1154.55
13.2668 0.23047(8.5693)
a50:20
a50 20 E50 a70
G = (1154.55+50)/0.95 = 1,267.95.
MLC‐09‐11
145
Question #298
Answer: A
2
5, 000
E ( Z ) (5, 000 /1.030) (0.005)
(1 0.005)(0.006)
1.030(1.032)
2
2
2
5, 000
(1 0.005)(1 0.006)(0.007)
1.030(1.032)(1.035)
392,917
Question #299
Answer: E
44.75 0.00004(1.144.75 ) 0.002847
44.5 0.00004(1.144.5 ) 0.002780
1000 E ( 4.75 L) 0.25{0.04 E ( 4.75 L) 150 150(0.05) 0.002847[10, 000 100 E ( 4.75 L)]}
E ( 4.75 L) {1000 0.25[150 150(0.05) 0.002847(10, 000 100)]} / [1 0.25(0.04 0.002847)]
961.27
961.27 E ( 4.5 L) 0.25{0.04 E ( 4.5 L) 150 150(0.05) 0.002780[10, 000 100 E ( 4.5 L)]}
E ( 4.5 L) {961.27 0.25[150 150(0.05) 0.002780(10, 000 100)]} / [1 0.25(0.04 0.002780)]
922.795
Question #300 - Removed
Question #301
Answer: E
The death benefit is max(100, 000,1.3 85, 000 110, 500) 110,500 .
The withdrawal benefit is 85, 000 1, 000 84, 000 .
(death)
(withdrawal)
( 9 AS P E )(1 i ) 110,500q79
84, 000q79
AS
10
(death)
(withdrawal)
1 q79
q79
(75, 000 9, 000 900)(1.08) 110,500(0.01) 84, 000(0.03)
1 0.01 0.03
89, 711.
Note – companies find asset share calculations less useful for universal life
policies than for traditional products. This is because policyholders who choose
different premium payment patterns have different asset shares. However, for any
pattern of premiums, an asset share can be calculated.
MLC‐09‐11
146
Question #302
Answer: B
10V
( 9V G E )(1 i ) 1000qx(death)
)qx(withdrawal)
10 CV (1 qx(death)
9
9
9
(death)
( withdrawal)
1 qx(death)
(1
q
)
q
9
x 9
x 9
(115 16 3)(1.06) 1000(0.01) 110(1 0.01)(0.10)
128.83.
1 0.01 (1 0.01)(0.10)
Expected deaths = 1000(0.01) = 10; actual deaths = 15.
Expected withdrawals = 1000(1 – 0.01)(0.1) = 99; actual withdrawals = 100.
Gain from mortality and withdrawals is equal to
(Expected deaths – Actual deaths)(Death benefit – End of Year Reserve)
+ (Expected withdrawals – Actual withdrawals)(Withdrawal benefit – End of Year
Reserve)
= (10 – 15)(1000 – 128.83) + (99 – 100)(110 – 128.83) = -4337.
Question #303
Answer: C
Because there are no cash flows at the beginning of the year, the only item
earning interest is the reserve from the end of the previous year. The gain is
1000(10,994.49)(0.05 – 0.06) = –109,944.90
Question #304
Answer: B
Expenses are incurred for all who do not die. Because gain from mortality has not
yet been calculated, the anticipated experience should be used. Thus, expenses
are assumed to be incurred for 1000(1 – 0.01) = 990 survivors. The gain is 990(50
– 60) = -9,900.
MLC‐09‐11
147
Question #305
Answer: E
The tenth reserve is
(d )
9V (1 i ) (1 q74 )(1000 50)
V
10
(d )
1 q74
10,994.49(1.06) (1 0.01)(1050)
1 0.01
V
10,
721.88.
10
V
10
Note that reserves are prospective calculations using anticipated experience.
There were 2 more deaths than expected. For each extra death, an annuity benefit
is not paid, an expense is not paid and a reserve does not have to be maintained.
Thus, the saving is 1000 + 60 + 10,721.88 = 11,781.88. The total gain is
2(11,781.88) = 23,563.76. Because the gain from expenses has already been
calculated, the actual value is used.
As an aside, the total gain from questions 303-305 is -96,281. The total gain can
be determined by first calculating the assets at the end of the year. Begin with
1000(10,994.49) = 10,994,490. They earn 5% interest, to accumulate to
11,544,215. At the end of the year, expenses are 60 for each of 988 who did not
die, for 59,280. Annuity benefits of 1000 are paid to the same 988 people, for
988,000. Assets at the end of the year are 11,544,215 – 59,280 – 988,000 =
10,496,935. Reserves must be held for the 988 continuing policyholders. That is,
988(10,721.88) = 10,593,217. The difference, 10,496,935 – 10,593,217 = -96,282.
MLC‐09‐11
148
Question #306
Answer: E
d
tV G ( tV ) t (bt tV )
dt
At t = 4.5,
4.5V 25 0.05( 4.5V ) 0.02(4.5)(100 4.5V ) 16 0.14( 4.5V )
Euler’s formula in this case is 5.0V 4.5V (5.0 4.5) 4.5V .
V '
t
Because the endowment benefit is 100, 5.0V 100 and thus,
100 4.5V 0.5( 4.5V ) 4.5V 0.5[16 0.14( 4.5V )] 8 1.07( 4.5V )
V 85.981.
Similarly,
4.5V 4V (4.5 4.0) 4V and
4.0V 25 0.05( 4.0V ) 0.02(4.0)(100 4.0V ) 17 0.13( 4.0V )
85.981 4.0V 0.5( 4.0V ) 4.0V 0.5[17 0.13( 4.0V )] 8.5 1.065( 4.0V )
4.5
V 72.752.
4.0
Note that if smaller step sizes were used (which would be inappropriate for an
exam question, where the step size must be specified), the estimate of the time 4
reserve converges to its true value of 71.96.
Question #307
Answer: A
d
tV G ( tV ) t (bt tV )
dt
At t = 5.0,
5.0V 25 0.05( 5.0V ) 0.02(5.0)(100 5.0V ) 15 0.15( 5.0V )
V '
t
Because the endowment benefit is 100, 5.0V 100 and thus,
5.0V 15 0.15(100) 30 .
Euler’s formula in this case is 4.5V 5.0V (4.5 5.0) 5.0V 100 0.5(30) 85.
Similarly,
4.0V 4.5V (4.0 4.5) 4.5V and
4.5V 25 0.05( 4.5V ) 0.02(4.5)(100 4.5V ) 16 0.14( 4.5V ) 16 0.14(85) 27.9 .
4.0V 85 (4.0 4.5)(27.9) 71.05.
Note that if smaller step sizes were used (which would be inappropriate for an
exam question, where the step size must be specified), the estimate of the time 4
reserve converges to its true value of 71.96.
MLC‐09‐11
149
Question #308
Answer: A
t
t
0 s ds e 0 (0.05 0.02 s ) ds e (0.05t 0.01t 2 )
t p0 e
1
p0 e 0.06 0.94176
4
APV 80(1 0.25t )e t t p0 t dt
0
f (1) 80(1 0.25)e 0.05 (0.94176)(0.05 0.02) 3.7625.
Question #309
Answer: D
Let P be the benefit premium. There are three ways to approach this problem. The
first two are intuitive:
The actuarial present value of the death benefit of 1000 is 1000 10 | A40 . The return
of premium benefit can be thought of as two benefits. First, provide a ten-year
temporary annuity-due to everyone, with actuarial present value Pa40:10 . However,
those who live ten years must then return the accumulated value of the premiums.
This forms a pure endowment with actuarial present value Ps10 10 E40 . The total
actuarial present value of all benefits is 1000 10 | A40 Pa40:10 Ps10 10 E40 . Setting this
equal to the actuarial present value of benefit premiums ( Pa40:10 ) and solving gives
1000 10 | A40 Pa40:10 Ps10 10 E40 Pa40:10
1000 10 | A40 Ps10
P
1000 10 | A40 1000 10 E40 A50 1000 A50
.
s10 10 E40
s10 10 E40
s10
The second intuitive approach examines the reserve at time 10. Retrospectively,
premiums were returned to those who died, so per survivor, the accumulated
premiums are only the ones paid by the survivors, that is Ps10 . There are no other
past benefits so this is the reserve (it is easy to show this using a recursive
formula) Prospectively, the reserve is the actuarial present value of benefits (there
are no future premiums), or 1000A50 . Setting the two reserves equal to each other
produces the premium:
1000A50
.
P
s10
MLC‐09‐11
150
The final approach is to work from basic principles:
APV (benefit premiums) = Pa40:10 .
9 9k
APV benefits = 1000 10 | A40 P v k j 1 k p40 (1 i) j 1 j | q40 k
k 0 j 0
In that double sum, k is the time the premium is paid, with probability k p40 that it is
paid. j is the curtate time, from when the premium was paid, until death. The
amount of premium refunded, with interest is P(1 i ) j 1 . The probability, given that
it was paid, that it will be refunded at time j+1 is j | q40 k . The interest discount
factor, from the date of refund to age 40 is v j k 1 vk+j+1. Then,
9 9k
9 9k
P v k j 1 k p40 (1 i ) j 1 j | q40 k P v k k p40 j | q40 k
k 0 j 0
k 0 j 0
P v k k p40 10 p40 P a40:10 10 p40 a10
9
k 0
Setting APV benefit premiums = APV benefits:
Pa40:10 1000 10 | A40 P (a40:10 10 p40 a10 )
P 10 p40 a10 1000 10 | A40
P
10
E40 (1000 A50 ) v10 10 p40 (1000 A50 ) 1000 A50
.
s10
10 p40 a10
10 p40 a10
The numerical answer is
249.05
P
17.83.
13.97164
MLC‐09‐11
151
© Copyright 2025