GCE AS/A level 1191/01-A FRENCH - FN1 ORAL – TOPIC – BASED CONVERSATION Card A 2012 Information for Candidates Candidates will be allowed a period of 15 minutes to prepare the 2 cards (A and B). Brief notes may be made on a separate sheet of paper (NOT on the cards) and these, and the cards, will be handed to the examiner at the end of the examination. No dictionaries are allowed. CJ*(S12-1191-01A) 2 Les traditions A1 1. Quelles différences et similarités y a-t-il entre les traditions qu’on voit sur les deux images? 2. Faut-il encourager ou abolir les traditions à votre avis? Pourquoi? Pourquoi pas? 3. Quelle est l’importance des traditions pour la société, à votre avis? (1191-01A) 2 La mode des jeunes B4 A B La mode est très importante pour tous les jeunes. La mode n’a aucune importance pour les jeunes. Bien choisir nos vêtements nous permet de montrer notre individualité. Tous les jeunes portent un jean, c’est comme un uniforme! En même temps, la mode nous permet de nous identifier à d’autres groupes de jeunes. Je ne veux pas m’identifier aux autres. 1. Quelles différences y a-t-il entre les idées qu’on lit dans les deux textes? 2. Considérez-vous personnellement que la mode soit importante? 3. Quelle est l’importance de la mode pour l’individu et pour la société? (1191-01J) Topic 6: Changing Countryside If you answer Question 6 put a cross in this box 6 Look at Figure 6. Rank Factor Average score out of 10 1 Climate 8.1 2 Views and scenery 7.8 3 Garden/grounds 7.4 4 Peace and quiet 7.3 5 Transport links 7.0 6 Restaurants 6.4 7 Sports facilities 6.3 8 Security 6.2 9 Cultural attractions 6.1 10 Traditional architecture 6.0 Figure 6 – A survey of the most important factors considered when choosing second home locations in the UK (a) A The natural environment is very important B Property prices are very important C Sports facilities are the most important factor D House type is more important than gardens and grounds 12 *P41374A01220* (1) (b)Outline one reason why some local people do not welcome second homeowners. (2) . . . . . . . . . . . .................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................... ........................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................................. . . . . . . . . . . . . . . . . . . . . *(c) For a named rural area in a developed country, describe the attempts made to deal with the challenges that it faces. (6) Named rural area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................. . . . . . . . . . . . .................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........... ................................................................................................................................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................................................................................................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............ ................................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........... ................................................................................................................................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................................................................................................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................................................................................................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................................................................................................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................................................................................................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................................................................................................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................................................................................................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................................................................................................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................................................................................................................... . . . . . . . . . . . . . . . . . . . . . (Total for Question 6 = 9 marks) TOTAL FOR SECTION B = 9 MARKS 13 *P41374A01320* 4. Leave blank With respect to a fixed origin O, the line l1 has vector equation − 9 5 r = 8 + μ − 4 5 − 3 where μ is a scalar parameter. The point A is on l1 where μ = 2. (a) Write down the coordinates of A. (1) The acute angle between OA and l1 is θ, where O is the origin. (b) Find the value of cos θ. (3) → → The point B is such that OB = 3OA. The line l2 passes through the point B and is parallel to the line l1. (c) Find a vector equation of l2. (d) Find the length of OB, giving your answer as a simplified surd. (2) (1) → The point X lies on l2. Given that the vector OX is perpendicular to l2, (e) find the length of OX, giving your answer to 3 significant figures. (3) ____ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ 12 *P42827A01232* Answer ALL questions. Write your answers in the spaces provided. You must write down all stages in your working. You must NOT use a calculator. 1 Given that 1793×185 = 331705 write down the value of (a) 1.793× 185 ................................................... (b) 331 705 ÷ 1.85 ................................................... (Total for Question 1 is 2 marks) 2 Mr Mason asks 240 Year 11 students what they want to do next year. 15% of the students want to go to college. 3 of the students want to stay at school. 4 The rest of the students do not know. Work out the number of students who do not know. .......................................... (Total for Question 2 is 4 marks) 3 *P43598A0328* 3 Sixteen babies are born in a hospital. Here are the weights of the babies in kilograms. 2.4 2.7 3.5 4.4 4.5 4.1 4.4 2.8 4.1 3.8 3.8 4.2 3.3 3.0 3.7 3.3 Show this information in an ordered stem and leaf diagram. Key: (Total for Question 3 is 3 marks) 4 (a) Expand 3(2 + t) .......................................... (1) (b) Expand 3x(2x + 5) .......................................... (2) (c) .......................................... (2) (Total for Question 4 is 5 marks) 4 *P43598A0428* 5 Write 525 as a product of its prime factors. .......................................... (Total for Question 5 is 3 marks) 6 Ed has 4 cards. There is a number on each card. 12 6 15 ? The mean of the 4 numbers on Ed’s cards is 10 Work out the number on the 4th card. .......................................... (Total for Question 6 is 3 marks) 5 *P43598A0528* 2 Section A Practical work completed during the course This section is compulsory. Answer all four parts of the question. At the beginning of your answer, state the title of your piece of practical work. Question 1 Choose a piece of practical coursework in which you were involved as actor or designer or technician. Answer questions 0 1 - 0 4 on the same practical work and the same skill. 0 1 Describe what the piece was about; state the period, style and genre of the piece, your target audience, the performance space and any technical or design elements used. You should state whether your involvement was as actor or designer or technician. (10 marks) 0 2 Explain how you applied your skill as actor or designer or technician in the early stages of preparing this piece of practical work to help create an engaging piece of drama. Give at least one example of your preparatory work. (10 marks) 0 3 Analyse how you developed your own skill to tackle problems. You should refer to at least one occasion in the preparation period when you used your acting or design or technical skills to overcome at least one specific problem. (10 marks) 0 4 Evaluate your success in creating engaging drama for your audience through the application of your specific skill as actor or designer or technician. You should support your answer with reference to at least one particular moment from the final performance. (10 marks) G/T77483/Jun12/42401 4 2 Mike is a talented athlete. He trains at the local gym. (a) Describe the jobs of two qualified practitioners working at the gym who make his training more effective . .............................................................................................................................................. (2) (b) Mike does a standard fitness test for athletes. (i) For five minutes he steps up and down on a gym bench quickly. He then measures his pulse rate three times at one minute intervals. These are his results. pulse rate per minute pulse rate 1 1 minute after finishing test 85 pulse rate 2 2 minutes after finishing test 73 pulse rate 3 3 minutes after finishing test 71 Use this formula to show that Mike's fitness number is close to 66. fitness number = 30 OOO 2 x (pulse rate 1 +pulse rate 2 + pulse rate 3) Show your working. (2) OOCA2012 5 (ii) Mike uses this table of fitness numbe:rs to claim that his fitness is average. gender excellent above average average below average poor male more than 90 90- 80 79-65 64-55 less than 55 female more than 86 86- 76 75- 61 60- 51 less than 50 Is Mike justified in making this claim? Explain your answer using information from this table. ...................................................................................................................................... (2) (Total: 6) OOCA2012 Turn over
© Copyright 2025