Nanotechnology for Aerospace Applications Prof. Dr. Ekmel Özbay Bilkent University Director, Nanotechnology Research Center (NANOTAM) Director, Space Technologies Research Center (BİL-UZAY) Ozbay Group – Research Scientists – Dr. Mutlu Gökkavas • Ph.D. Boston University 2001, – Dr. Engin Arslan • Ph.D. 2005 Hacettepe Uni. – Dr. Funda Gundogdu • Ph.D. 2010, Crete Univ. – Dr. Bayram Bütün • Ph.D. 2010, Bilkent – Dr. Özlem Şen • Ph.D. 2000, ODTÜ – Dr. Tolga Kartaloğlu • Ph.D. 2000, Bilkent – Dr. Neval Yılmaz • Ph.D. 2010, Bilkent Bilkent NANOTAM – Project Engineers Ahmet Toprak Doğan Yılmaz Alper Bayrı Evren Öztekin Ahmet Akbaş Aylin Karagöz Başar Bölükbaş M. Cihan Çakır Seval Dönertaş Mustafa Öztürk Sıla Türku Kural Ünal Yasemin Kanlı Nursel Aşıcı G. Orkun Arıcan Onur Serbest Gamze Seğmenoğlu Ömer Cengiz Gökhan Kurt Pakize Demirel Mehmet Özgür Pınar İstanbulluoğlu Ramazan Özsoy Serdar Öğüt Ünal Çifçier Volkan Koçak Yıldırım Durmuş Tecnicians Burak Turhan Deniz Çalışkan Hüseyin Çakmak – Semih Çakmakyapan – Melis Aygar – Onur Özdemir – Şaban Bilek – Bilal Barut – Berk Osunluk – Francesco Pierini – Merve Yılmaz – Çağdaş Ballı NANOTAM R&D 800 m2 Implementa0on and Manufacturing 4000 m2 GaN MOCVD System Lithography Lab Op0cal Characteriza0on Nanoelectronics Lab New Clean Rooms (Class 100) Raith E-‐Line and E-‐Line Plus electron beam lith. systems Nanophotonics Measurements Nanotechnology for Aerospace & Avia8on Applica8ons NASA Nanotechnology Program Na0onal Nanotechnology Ini0a0ve (NNI), 2000, USA President Clinton. NNI 2015 Fiscal Year Budget: $ 1.5 Billion. NNI 2001-‐2015 FY Sum: $ 21.0 Billion. The 2015 NNI Budget supports nanoscale science and engineering R&D at 11 agencies (NIH, NSF, DOE, DOD, NIST, …) 1) Materials (NASA Langley Laboratory) – 2) Electronics and Signal Processing (NASA Ames Laboratory) – 3) Nanoelectronics: Low volume, low energy consuming, signal processing and communica0on systems Sensors and systems (NASA Jet Propulsion Laboratory) – 4) Nanomaterials: Durable, programmable, sensor-‐integrated, mul0func0onal materials. Nanosensors: low power consump0on, efficient, high performance detectors and systems for satellite control, ecological and deep space imaging, working at different spectrums. Basic research – – Biomolecular Nanotechnology, Lab-‐on-‐a-‐chip detec0on, therapy and treatment systems for astronauts. … Na0onal Nanotechnology Ini0a0ve Four theme areas Requirements for Space • Energy – Low energy consump0on • Nanotransistors and nanoCMOS integrated circuits – Energy produc0on • Solar cells whose efficiency is enhanced by nanotechnology – Fuel storage • 95% of satellite mass is fuel on earth • Carbon nanotube based fuel storage systems under development Requirements for Space • Materials – Development of radia0on resistant and mechanically strong materials – Self-‐healing nanomaterials – Astronaut clothes with proper0es such as lightweight, isola0ng heat, durable, mul0func0onal. SPACE ELEVATOR: 63,000 MILE LONG Requirements for Space • Communica0on systems – Low power consump0on, high speed, space-‐compliant and long life0me… SiC and GaN based communica0on subsystems, nanotransistors, graphene… – Electrically small miniature antennas developed with nanotechnology. Requirements for Space • Sensors – Nanodetectors, opera0ng under extreme condi0ons (radia0on and cold). III-‐V (GaN, SiC, GaAs) based Material systems to be used for such detectors. – Iner0al measurement systems (NEMS, MEMS and Fiber Op0c Gyroscope) – Nanobiosensors SWIR Camera Short Wave Infra Red SWIR • The third and final window in the infrared spectrum. • Complementary to LWIR and MWIR imaging. • Uses reflected light, same as the visible spectrum. (LWIR, MWIR uses blackbody radia0on.) • Does not require cooling, i.e. very small and lightweight cameras. SWIR Visible SWIR MWIR LWIR 320 x 256 SWIR 30 um pitch SWIR Camera Prototype Size: 7 cm 320 x 256 SWIR Airgun, ~500 °C Camera Images 320 x 256 SWIR 640 x 512 SWIR 640 x 512 SWIR SWIR Visible Test Card Photodetector prototypes working at eye-safe spectrum Photodetector chip Diced chip Packaged single detectors Photodetector products are developed for laser range finder systems. High power laser diode prototypes Lazer Type: GaAlAs laser diode, 810 (+/-10)nm Package: Stacked array, contact cooled Operating temperature: 20 (+/-5)oC (Wavelength shift compensated by TEC) Power: Each array ≥ 100 W Total≥ 300 W (QCW) Fiber Optic Gyroscopes for Inertial Navigation Systems Confidential / Gizli GaN Based High Speed Integrated Circuits for High Power RF Applications High Power RF ICs: Why GaN MMIC? GaN General Proper0es • GaN has, – Wide bandgap – High breakdown voltage – High power density – High gain performance • Microwave devices based on GaN material provide, – 10-‐30 0mes more power output – High reliability GaN General Proper0es • • • • • • High efficiency High power Can operate at high frequencies Wide bandwidth Can operate at high temperatures Can withstand space radia0on (space tolerant) Comparison of Power Amplifier Performance GaN Proper0es • High power per unit gate width, so: – Higher output power can be alainable with smaller devices – Smaller devices have higher impedances, which leads easier matching with less components. (mismatch is 10 0mes smaller than GaAs) GaN Power Density GaN Applica0ons (other than power amplifiers) GaN based devices are preferred at • Radar, military and civil applica0on (such as CATV, Cable TV) because of low current consump0on, high linearity. • Switching applica0ons, because of wideband, and high power tolerance. These swithes are used for RF switching and power conversions. • Biomedical applica0ons, because it is not toxic. GaN Based High Power Amplifier Design and Fabrication Process Design, Fabrication and Measurement Workflow HEMT Maske tasarımı Üretimin başlaması Epitaksiyel Yapı Tasarımı Epitaksiyel Yapının Büyültülmesi (MOCVD) H H Mikro-nano fabrikasyon Yapı Karakterizasyonu - Hall ölçümü - XRD ölçümü - AFM ölçümü - PL ölçümü H -Mesa aşındırma -Ohmik Metal -Gate Metal (Nanolitografi) -SiN kaplama -SiN Açıklığı -Bağlantı Metali Kaplaması HEMT Karakterizasyon; - DC I-V - TLM - S-parametreleri Tasarıma uygun mu? E Sheet Resistance uygun değerde mi? H Ids, Rc, S21, uygun değerde mi? HEMT Modelleme (Büyük sinyal modeli); - Pulsed ölçümler E E SEM görüntüsü uygun mu? HEMT Maske tasarımı E Design, Fabrication and Measurement Workflow Pasif Aygıt Simülasyonları H HEMT Modelleme (Büyük sinyal modeli); - Pulsed ölçümler Ölçüm ve model sonuçları uygun mu? Pasif aygıt maskesi E ADS MMIC Tasarımı Pasif aygıt fabrikasyonu MMIC Maske çizimi H MMIC fabrikasyon Pasif aygıt karakterizasyonu - S parametreleri E H H MMIC karakterizasyon; - S parametreleri - Çıkış gücü SEM görüntüsü uygun mu? Teknik isterlere uygun mu? E Üretimin tamamlanması E S parametrelerine uygun mu? Design, Fabrication and Measurement Workflow GaN kontak tabakası t ~3-5 nm Al0.22Ga0.78N bariyer t ~20-25nm AlN aratabaka t~1 nm Yüksek Mobiliteli GaN Kanal Tabakası t~100nm GaN tampon (4 ) t~ 900 nm GaN tampon (3 ) t~ 750 nm GaN tampon (2 ) t~ 1,1 µm GaN tampon (1 ) t~ 350 nm HT-AlN Tampon tabakası t ~ 140 nm AlN NL ( 1:30 min ) ~10nm SI 6H-SiC Alttaş Epitaxial Material Growth and Characterization HEMT structure on SI-6H-SiC • 44 44 Nanomaterial Growth Design, Fabrication and Measurement Workflow Epitaxial Material Growth and Characterization HEMT structure on SI-6H-SiC Structure 1 Structure 2 Design, Fabrication and Measurement Workflow 0.21 nm surface roughness 0.24 nm surface roughness Epitaxial Material Growth and Characterization HEMT structure on SI-6H-SiC Design, Fabrication and Measurement Workflow 2-Omega XRD Epitaxial Material Growth and Characterization HEMT structure on SI-6H-SiC Design, Fabrication and Measurement Workflow HEMT #1 Hall Effect Measurement Clean Room Process Lithography, PECVD, ICP RIE, Nanolithgraphy, … Design, Fabrication and Measurement Workflow Airbridge 4 x 75 µm transistor Photograph after completed fabrication GaN Based High Power EHF Amplifier DC GaN Nanotransistor Technology 100GHz Performance GaN Based High Power EHF Amplifier RF Characteriza0on GaN Based High Power EHF Amplifier RF performance of 130 nm gate width transistors GaN Based High Power EHF Amplifier HEMT Performance GaN Based High Power EHF Amplifier After 1st metal Dielectric opening Capacitors after 2nd metal Passive device fabrication and characterization GaN Based High Power EHF Amplifier Resistor Passive device fabrication and characterization GaN Based High Power EHF Amplifier Capacitor Passive device fabrication and characterization GaN Based High Power EHF Amplifier 0.00 -‐0.05 dB(S (2,1)) -‐0.10 -‐0.15 -‐0.20 m7 m7 freq= 20.50GHz dB (S (2,1))=-‐0.233 -‐0.25 -‐0.30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 freq, G Hz Transmission line Passive device fabrication and characterization • 61 61 GaN Based High Power EHF Amplifier 4x75 µm transistor: Model vs Measurement Resistor MMIC Design GaN Based High Power EHF Amplifier GaN Based High Power EHF Amplifier GaN Based High Power EHF Amplifier GaN Based High Power EHF Amplifier Reliability Measurements (B) RF örnek düzeneği (A) RF, DC ve ısıl güvenilirlik test sistemi (C) Milimetredalga örnek düzeneği • 66 GaN Based High Power EHF Amplifier Reliability Measurements • Tests at different temperatures • Aging tests • Look for failure mechanisms • More than 2000 hours of testing • +1,000,000 hour MTF GaN Based High Power EHF Amplifier Space Radiation Tests • 3 back-to-back radiation tests with a total does of 100 krad • 9 MMICs were tested GaN Based High Power EHF Amplifier Space Radiation Tests • After first dose no significant change GaN Based High Power EHF Amplifier Space Radiation Tests • After second dose no significant change in performance GaN Based High Power EHF Amplifier Space Radiation Tests 100 krad • After third dose no significant change in performance Radyasyon uygulanmış örnek Radyasyon uygulanmamış örnek GaN Based High Power EHF Amplifier GaN temelli yüksek güçlü EHF yükselteç GaN Based High Power EHF Amplifier GaN temelli yüksek güçlü EHF yükselteç GaN Based High Power EHF Amplifier Summary Output Power • At 20.2 GHz 30 dBm output power for 13 dBm input power. • At 21.2 GHz 30.6 dBm output power for 13 dBm input power. Gain: • High gain, more than 19.5 dB • 2 dB gain ripple • Reflection loss better than -10 dB 74 Where can these technologies be used? 1) 2) 3) 4) 5) 6) 7) 8) Electronic warfare systems Radar systems Satellite communication systems Jammers 4G Mobile communications WiMax Wireless Internet Cable TV Millimeter wave radar in cars for accident prevention 9) High Power Electronics: Energy and Transportation NANOTAM - Product Based Projects Acknowledgements! • Turkish Defense Department! • SSM! • TUBITAK! • ASELSAN ! • DPT (Kalkınma Bakanlığı)! • FP7! ASELSAN NANO-HEMT – PHOME! – ECONAM, ! – N4E, Nanophotonics for Energy! • ESF EUROGRAPHENE! !
© Copyright 2025