Suggestions for Now casting of the optical environment Ove Gustafsson, FOI Ove.gustafsson@foi.se Abstract The use of optical och electro-optical system within society both the military part and the civil society are expanding continuously. The environmental influence on the optical signals are evinced as reduction of the signal and turbulence disturbance, with data loss, enlarged nominal optical hazard distances (NOHD) and disturbed images as consequences. The signal reduction due to absorption and scattering for active and passive system can be deduced out of weather parameters as humidity, temperature, wind, visual range etc. The important of the influence on atmospheric attenuation and optical turbulence on laser propagation and images as function of weather parameters as for instance the structure parameter of refractive index will be discussed. With the use of mesoscale numerical weather prediction methods there are also possibilities to deduce for instance the structure parameter for refractive index (Cn2) as function of heights. Introduction Lidar measurement Nominal Ocular Hazard Distance, NOHD Atmospheric influence on NOHD ๏ฎ OHD Examples of effects due to turbulence Turbulence influence on laser safety range Structurfunction of refraction, Cn2 Cloud characterization Discussion and conclusions Lidar instrument Receiver: APD module diam. 1 mm (Licel S11518-10) focal length of 615 mm FOV of 1.6 mrad filter FWHM 12 nm Licel TR40: sample rate 40 MHz Laser: 230 mJ, 1064 nm, pulse length 5 ns, PRF 10 Hz, beam divergence 0.5 mrad beam diameter 3 mm IR-lidar measurement and comparison Lidarsondering 2014-09-10 (lokal tid) kl 10:28:42 - 10:33:45 Hm: 6975 Su: 50, H1: 2000, Sm: 50, H2: 10000, So: 50, ak: 8/100 Lidar sounding 2015-03-09 (local time) 15:30 - 16:00 9000 10000 1.064 µm 355 nm 9000 8000 7000 Altitude [m asl] (resolution 75 m) Altitude [m asl] (resolution 75 m) 8000 7000 6000 5000 4000 3000 5000 4000 3000 2000 2000 1000 1000 0 6000 0 2 4 6 8 Aerosol backscatter [1/(m sr)] 10 12 x 10 -7 0 0 2 4 6 Aerosol backscatter [1/(m sr)] 8 10 x 10 -7 Nominal Ocular Hazard Distance, NOHD ๐ธ= 4๐๐ ๐ ๐+๐โ๐ 2 a ๏ฑ 16,43 3,75 1 ๐๐๐ป๐ท = ๐ 4๐๐ ๐โ๐๐๐ธ โ๐ rNOHD NOHD 331,96 Gustafsson etal. โVisual appearance of wind turbine tower at long range measured using imaging systemโ SPIE88921Y, 2013 Laser Energy [J] Divergence [mrad] MPE [J/m2] NOHD [km] Designator Laser, single pulse 0,180 0,08 0,050 26,5 Designator Laser, pulse train 0,180 0,08 0,013 51,6 Influence of atmospheric attenuation on laser safety range 4๐๐ โ ๐โ µโ๐ ๐ 4๐๐ โ ๐โµโ๐ ๐ธ= = ๐ ๐+๐โ๐ 2 ๐ ๐+๐โ๐ 2 Lambert W function ๐๐ ๐ = ๐ง ๐(๐ง)๐ ๐(๐ง) = ๐ง Lambert W function 2 10 Steinvall, 2009 Coreless, et al 1996 Valluri et. al 2000 Chapeua-Blondeau et. al, 2002 ๏ฌy=z 1 Lambert W 10 ๏ฌ W(z) 0 10 -1 10 ๏ฌ W(z)/z -2 10 -2 10 0 10 2 10 4 10 Parameter z 6 10 8 10 10 10 Atmospheric influence on laser safety range, NOHD ๏ฎOHD ๐ ๐ + ๐๐ ๐ ๐ + ๐๐ โ exp( ) 2๐ 2๐( ) ๐ 2๐ ๐๐ป๐ท๐ = โ ฮผ ๐ Extinction coefficient [km-1] 60 Inf 0.00458 0.00229 0.00153 0.00115 0.000916 0.000763 0.000654 0.000573 NOHD-multiple Laser Safe Range [km] 50 OHD-multiple 40 30 NOHD-single OHD-single 20 10 0 0 50 100 150 Visibility [km] 200 250 300 Exemple of laser spots Turbulence, effects on image high low high turbulence low turbulence Från Baltic ´99 mätningarna FOA-R--00-0171-615--SE a b Intensity distributions in two 64 x 64 pixel image selections Visual images, range 18.6 km Turbulence influence on laser safety range, horizontal path Sannolikheten för skada vers avstånd, NOHD = 1261 m Irradians vs avstånd , NOHD = 1261 m 1 1 10 C2 =2e-15 m-2/3 n Sannolikheten för skada [-] Radiant exponering (irradians) [J/m 2] 0.9 0 10 -1 10 -2 10 C2 =2e-14 m-2/3 n 0.8 C2 =2e-13 m-2/3 n 0.7 0.6 0.5 0.4 0.3 0.2 0.1 -3 10 0 0.5 1 1.5 2 2.5 Avstånd [km] 3 3.5 Nd:YAG laser Laser Energy 5 mJ Puls frequence 20 Hz, Laser divergence 0,5 mrad 4 0 0 0.5 1 1.5 2 2.5 3 Avstånd [km] Gustafsson etal. โLidar measurement as support to the ocular hazard distance calculation using atmospheric attenuation โ SPIE, Toulouse, 2015. 3.5 4 Turbulence influence on laser safety range, slant path Sannolikheten för överskrida MTE vers avstånd, NOHD = 48,4 km Irradians vs avstånd , NOHD = 48 km 2 1 10 C2n=5e-17 m-2/3 Sannolikheten för skada [-] Radiant exponering (irradians) [J/m 2] 0.9 1 10 0 10 -1 10 C2n=5e-16 m-2/3 0.8 C2n=2e-15 m-2/3 0.7 0.6 0.5 0.4 0.3 0.2 0.1 -2 10 0 10 20 30 Avstånd [km] 40 50 Nd:YAG laser laser Energy 0.180 J puls frequence 11.5 Hz, laser divergence 0,08 mrad 60 43 44 45 46 47 48 49 Avstånd [km] 50 51 52 53 Structurfunction of refraction, Cn2, is influenced by weather and environment Sun time on the day season Cloud cover Meteorological parameters temperature humidity wind pressure Latitude Altitude convection wind shear Ground characteristics absorption och reflection vegetation buildings Cn2 Brytningsindex fluktuationer Täthets fluktuationer Temperatur fluktuationer, Temperatur gradient, Strålnings flöde Breddgrad Tid på dygnet och året Höjd över marken, z Ytan råhetsstruktur, zo Ytegenskaper Molnighet Luftfuktighet Markegenskap Vertikal Vindhastiget Marktäckning Vindhastighet Strukturfunktionen, Cn2 Strukturfunktionen, Cn2, mått på statistiska medelvärdet ๐ถ๐2 (๐12 ) = ๐1 โ ๐2 2 2 3 ๐12 Kolmogorov spektrum och gäller for skalära vågtalet, k, inom området mellan inre och yttre skallängden. ฮฆ๐ (๐ ) = 0,00330๐ถ๐2 ๐ 11 3 Modeller av Cn2 Tatarskiimodell 2 ๐ง โ๐ฅ ๐ถ๐2 (๐ง) = ๐ถ๐๐ där x = 4/3, dagtid x = 2/3, natt Friedโs och Brooknerโs modeller 2 โ๐ โ๐ง ๐ถ๐2 (๐ง) = ๐ถ๐๐ ๐ง ๐ ๐ง๐ Friedโs modell, b = 1/3, zo = 3200 m samt Cno2 = 4,22·10-14 m-1/3 Brooknerโs modell, zo = 320 m samt Cno2 = 3,6·10-13 m-1/3 b = 2/3, vid soluppgång och solnedgång b = 5/6, vid sol och dag klart väder b = 1, nattetid forts. Modeller av Cn2 Kaimal/Walters-Kunkels modell ๐ถ๐2 ๐ง = 2 ๐ถ๐๐ ๐ง0 ๐ง 4 โ3 ๐ง0 ๐ง, ๐ง0 โค 0,7๐ง๐ 4 โ3 0,5๐ง๐ ๐ง0 2,9 4 โ3 0,5๐ง๐ ๐ง0 0,5๐ง๐ โค ๐ง โค 0,7๐ง๐ ๐ง ๐ง๐ 3 0,7๐ง๐ โค ๐ง โค ๐ง๐ Kukharets-Tsvangs modell (K-T) ๐ถ๐2 2 ๐ถ๐๐ ๐ง 0,046 ๐ง = ๐ง0 4 โ3 ๐ง๐ + 0,6 โ ๐๐ฅ๐ โ12 ๐ง ๐ง๐ โ 1,1 0,046 4 โ3 ๐ง๐ ๐ง๐ 2 forts. Modeller av Cn2 Similaritetsmodeller 2 ๐๐ ๐ = 78 โ 10โ6 2 ๐๐ ๐ ๐๐ ๐ถ๐2 = ๐ถ๐2 ๐๐ ๐ ๐ ๐ฮ ๐๐ง ๐ ๐ = ๐๐ ๐๐ง 2 ๐ถ๐2 = ๐ง 4 3 ๐ฮ ๐๐ง 2 ๐3 ๐ ๐ forts. empiriska modeller av Cn2 Hufnagel modellen ๐ถ๐2 ๐ง = 8,2 โ 10โ56 ๐ 2 ๐ง 10 ๐ โ๐ง โ 10โ16 ๐ โ๐ง ๐ง๐2 ๐ง๐1 + 2,7 Hufnagel-Valley modellen ๐ถ๐2 ๐ง = 8,2 โ 10โ56 ๐ 2 ๐ง 10 ๐ โ๐ง ๐ง๐1 + 2,7 โ 10โ16 ๐ โ๐ง ๐ง๐2 + ๐ด๐ โ๐ง ๐ง๐3 forts. parametermodeller av Cn2 Sadot och Kopeika ๐ถ๐2 = 3,8โ10โ14 w+2โ10โ15 T + 2,8โ10โ15 ๐ ๐ป + 2,9โ10โ17 ๐ ๐ป 2 โ1,1โ10โ19 ๐ ๐ป 3 โ2,5โ10โ15 ๐๐ โ1,2โ10โ15 ๐๐ 2 โ8,5โ10โ17 ๐๐ โ5,3โ10โ13 1 Viktsfunktion, w 0.8 0.6 0.4 0.2 0 -4 -2 0 2 4 6 temporal tid, th 8 10 12 14 3 Moln karaktärisering Lidar med 1,5 µm laser kopplat till IR ev. i kombination med avståndsmätare. Studien โLidaranvändning för EO systemโ Karaktärisering - moln fördelning - molnbas - molntjocklek - molntäthet - optisk täthet - regn Exempel på lidarmätningar 2000 vågformer < 3 min 10 km -2 10 -3 10 -4 10 -5 10 -6 10 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Avståndskompenserat Elevation 22°, steg 2° Other examples Cloudy day (stratus) with ligh drizzle, T = +14° C, RH = 60 %, Vis. about 45 โ 50 km Haze close to ground Cloudy day (Cumulus) T = +14° C, RH = 60 %, Vis. 45 โ 50 km. Cloudy day (stratus) with ligh drizzle, T= 13° C, RH = 74 %, Vis. about 20 km Clear, sun no clouds. T= 17° C, RH = 55 %, Vis. 40 โ 50 km Clouds 2/8 cumulus. T= 20° C, RH = 50 %, Visibiility 25 โ 40 km. Visibility from pointmeter at the laser site Diskussion - 3D beskrivning av atmosfärsturbulens, Cn2 sfa höjden, med numeriska modeller, ex SAF-WRF (Masciadri et al. 1999) - Mängden aerosol sfa höjd med NWP + CTM (Kahnert 2008) - Molntäckning, molnbas och tjocklek med NWP Tack för uppmärksamheten! Lidar station Vidsel CALIPSO markspår 2014-09-30 69 68.5 68 67.5 67 66.5 66 65.5 65 16 17 18 19 20 21 22 23 24 25 JAS markspår vid , 2014-11-12 12:34:11 - 13:57:18 66.5 66.4 CALIPSO markspår 2014-09-30 66.19 66.3 66.18 Latitud 66.2 66.17 66.1 66.16 66.15 66 66.14 65.9 66.13 65.8 66.12 65.7 18.6 18.8 19 19.2 19.4 19.6 Longitud 19.8 20 66.11 20.2 20.4 19.56 19.58 19.6 19.62 19.64 19.66 19.68 19.7 19.72 19.74 19.76
© Copyright 2025