January 14, 2015 Advanced Analytical Mechanics-1 Analytical Mechanics ( AM ) lecture notes part 10, Summary Damped & Driven Oscillators Driving force F (t) = m A0 cos(ωt), eom is real part of x ¨ + 2β x˙ + ωr2 x = A0 eiωt Olaf Scholten KVI, kamer v3.008 tel. nr. 363-3552 email: scholten@kvi.nl Web page: http://www.kvi.nl/˜scholten trial solution: A= x(t) = Aeiωt gives special solution: A0 −iδ = |A|e (ωr2 − ω 2 ) + 2iβω Full sol. = Special sol. + sol. homogeneous eq. Non-linear effects Book Classical Dynamics of Particles and Systems, Stephen T. Thornton & Jerry B. Marion 5th Edition ISBN-10: 0534408966 — ISBN-13: 9780534408961 Frequency doubling (tripling) & Hysteresis & Chaos Oscillator with memory effect x ¨ + 2β x˙ + ωr2 x + ωr2 C x3 = A0 cos(ωd t) 0 2 3 4 5 6 . . . . . . . . ... . . . . . . . . . . . . . . .... .......... 3 2 1 0 -1 -2 ... . . . . . . . . . .... .... ...... ...... .. . .. . ... .... Tune up Tune down 4 Max Ampl Introduce an abstract reference-frame independent formulation of Mechanics via the Hamiltonian and Lagrangian formalisms. This lends itself to generalizations to problems in Statistical Mechanics, Quantum Mechanics, Relativistic Mechanics, Field Theory, ..... Phase Intro 1 3 .... ..... 2 ...... . . . . . . . . . . . ..... ... ............ . 1 0 0 1 2 3 .... 3 . . . . . . . . ..... . x. . ....... .oscil . . . . .... . 4 5 6 Frequency Initial conditions at slowly tune up or down frequency pendulum Tue Mar 31 2009 23:19:23 - Summary.1 - January 14, 2015 Advanced Analytical Mechanics-2 - Summary.2 - January 14, 2015 Advanced Analytical Mechanics-2 Fourier transform Chaos Computer simulations-6 Driven and damped non-linear Oscillator inverted linear part EOM of the type: x ¨ + 2β x˙ + ωr2 x = F (t)/m | {z } L[x] x ¨ + 2β x˙ + ωr2 x + ωr2 C x3 = A0 cos(ωd t) (dx/dt)/ parameters ωr = 2, β = 0.1, A0 = 4., ωd = 4.3, C = −1.1 2 2 ... .......................... ........................................................................................... ............................................................................................................................................... ............................................................................... ........................................... 0 0 -2 Phase -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 x amplitude 0 3 2 1 0 -1 -2 1000 Poincare´ -4 2000 3000 4000 .. .. . .. ...... .......... ...... .......... ............. ............ ............ ......... ... ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... .. ... . . . ....... .... .. . ... .. ..... ..... .... ..... ..... ... ........... .... ..... ............ ... .... ...... .... ...... .... ... . . .... .. ... ... ... ... ... .. ... . ... ... ... .. ... ... ... .. ... .. ........... ........ . . . . . .... .... .... . .... . . 3 2 . . . . .. .... ...... ...... ...... ...... ....... ...... ....... 1 ...... ... .... .... ... .... .... .... ... .... .... ..... .... .... .. .... . . . ... .. . .. .. .. . .. . .. .. .. . . .. 0 ..... ............. ... ..... ..... ...... ..... ....... .... ..... .... ...... .... ......... .... ...... ........... ... ..... ..... .. .. .. .. .. . .. . . . .. . .. ..... .. . .. . .. .. .. . ... . ... .. -1 .......... ......... ........ ......... .......... ........ ........ ....... ........ ......... ........ .. . . -2 -3 4000 5000 6000 7000 8000 time [0.01 sec] NL-pendulum Wed Apr 01 2009 23:00:02 An ei nω0 t n=−∞ = 2π/τ , An = A∗−n and Z 1 τ /2 F (t) e−i nω0 t dt An = τ −τ /2 with ω0 .......................... .. . -2 -4 F (t) = ∞ X gives the special solution ∞ 1 X An i nω0 t x(t) = e m n=−∞ (ωr2 − n2 ω02 ) + 2i nβω0 Greens function The Greens function is the response to F (t) 0 G(t; t ) = 1 −β(t−t0 ) ω1 m e sin ω1 (t − t0 ) 0 dt0 δ(t − t0 )F (t0 ) then Z x(t) = dt0 G(t; t0 )F (t0 ) If F (t) = R = δ(t − t0 ) > t0 for t < t0 for t - Summary.3 - January 14, 2015 Advanced Analytical Mechanics-3 - Summary.4 - January 14, 2015 Advanced Analytical Mechanics-3 Hamilton’s principle of least action Variational Calculus Fully equivalent to Newtonian Dynamics Brachystochrone & Soapfilms & Geodesic Z R2 A = 1 dA where dA = 2πxds p √ √ 2 2 02 ds = dx + dy = dx 1 + Y = dy 1 + X 02 Lagrange multiplier λ(x) with G(Y1 , · · · , YN ; x) d ∂F ∂G ∂F − + λ(x) =0 ∂Yi dx ∂Yi0 ∂Yi Alternative form i ∂F d h 0 ∂F F −Y = 0 dx ∂Y ∂x =0 i = 1, · · · , N t2 S1,2 = L(x, x; ˙ t) dt t1 Lagrangian L(x, x; ˙ t) = T (x) ˙ − V (x) Constraint g(xi , t) = 0 gives ∂L d ∂L ∂g − + λ(t) = 0 with g(qi ; t) = 0 ∂qi dt ∂ q˙i ∂qi where force exerted by the constraint is Qi = λ(t) ∂g ∂qi Hamiltonian eq. of motion, momentum pi = ∂L ∂ q˙i def H(q, p, t) = pi q˙i − L(q, q, ˙ t) ∂H ∂H q˙i = ; p˙i = − ; ∂pi ∂qi ∂L ∂H dH =− =− ∂t ∂t dt Poisson Brackets ∂F ∂G ∂F ∂G {F, G} = − ∂qn ∂pn ∂pn ∂qn - Summary.5 - January 14, 2015 Advanced Analytical Mechanics-4 - Summary.6 - January 14, 2015 Advanced Analytical Mechanics-4 Central potential Conservation Laws If ∂L ∂t = 0 then dE dt = 0 with E = q˙i pi − L = T + V total energy is conserved L = 21 µ(r˙ 2 + r2 θ˙2 ) − V (r) L cyclic in θ, conjugate momentum is constant of motion pθ = ∂L/∂ θ˙ = µr2 θ˙ = Jz L invariant under translation ~r → ~r + δ~r then N X d p~a = 0 dt a=1 Z d X ~N ~ = ~r × p~ Ma=1 = 0 ; M dt a r t − t0 = 2 1 l 2 µr 2 dr0 q r0 total linear momentum is constant of motion ~ × ~r L invariant under rotation δ~r = δ φ 2 A) Conservation of energy: E = µr˙ + 1 2 2 µ (E − V (r0 )) − l2 µ2 r 02 B) find θ(r): dθ = θr˙˙ dr gives Z θ(r) = ± r l/µr02 dr0 q 2 µ (E − V (r0 )) − l2 µ2 r 02 total angular momentum is Constant Of Motion C) Euler-Lagrange: µ(¨r − rθ˙2 ) = − ∂V ∂r = F (r) −µr2 d2 1 1 + = 2 F (r) 2 dθ r r l Stability Small amplitude expansion + V (r) - Summary.7 - January 14, 2015 Advanced Analytical Mechanics-5 - Summary.8 - January 14, 2015 Advanced Analytical Mechanics-5 Kepler’s problem; Planetary motion F~ = − rk2 rˆ or V = −k/r with k > 0 Inertial frame e ˆi , rotating frame, eˆ0i , same origine Vectors ~ rI = (r1 , r2 , r3 ) and ~rB = (r10 , r20 , r30 ) point to point α = 1 + cos θ r with α 2 p = (r10 eˆ01 , r20 eˆ02 , r30 eˆ03 ) = (r1 eˆ1 , r2 eˆ2 , r3 eˆ3 ) = l /µk and eccentricity = p 1 + 2Eα/k E E E E k = − 2α <0 =0 >0 ~vI = ~vB + ω ~ × ~rB ~aI = ~aB + 2~ ω × ~vB + ω ~˙ × ~rB + ω ~ × (~ ω × ~rB ) Kepler’s first law: =0 <1 =1 >1 Non inertial frame ~B Thus F circle ellipse parabola hyperbola = F~inert − 2m~ ω × ~vB − mω ~˙ × ~rB − m~ ω × (~ ω × ~rB ) Deviation of falling mass from plumb line F~B⊥ = F~B − m~g = −2m~ ω × ~vB Interplanetary travel & stability circular orbit Effective potential Absorb parts of kinetic energy in an Effective Potential Foucault pendulum: g Solution x = Ax (t)eiω0 t , y = Ay (t)eiω0 t with ω02 = l Ax = A sin ωr t & Ay = A cos ωr t with ωr = ωE sin λ - Summary.9 - January 14, 2015 Advanced Analytical Mechanics-6 Inertial Tensor P 1 1 2 ~ T = 2 M V + Tr with Tr = 2 i,j Iij ωi ωj and h i X X 2 Iij = mα δij ( rα,k ) − rα,i rα,j α k R Integral from: Iij = ρ(~ r) δij r2 − ri rj d3 r h i O cm Steiner parallel axis theorem: Iij = Iij + M δij~a2 − ai aj Li = X Iij ωj j - Summary.10 - January 14, 2015 Advanced Analytical Mechanics-6 Rotating Body Equation of motion ~˙ = N ~ L in Body-fixed (rotating) system: ~ =N ~ {I} · ω ~˙ + ω ~ ×L Use principal axes I1 ω˙ 1 + (I3 − I2 )ω2 ω3 = N1 I2 ω˙ 2 + (I1 − I3 )ω3 ω1 = N2 I3 ω˙ 3 + (I2 − I1 )ω1 ω2 = N3 Euler’s equations for Rigid Body Coordinate Transformation: P P 0 ri = j λij rj and ri = j ˜ ij r0 with λ j ˜ ij = eˆi · eˆ0 = λji thus λ21 = eˆ02 · eˆ1 = |r0 ihr| and λ j ˜ = {λ}−1 = {λ}T = [|r0 ihr|]T |rihr0 | = {λ} ˜ ~ 0 = {λ}L ~ and {I 0 } = {λ}{I}{λ} L Euler angles ~r = λψ λθ λφ~r0 = λ~r0 Symmetric top, N=0 ω1 (t) = A cos(Ωt + φ), ω2 (t) = A sin(Ωt + φ) with Ω = ω3 (I3 − I1 )/I1 Symmetric top, tip fixed -I ˙ 2 − M gh cos θ L = 21 I1 (φ˙ 2 sin2 θ + θ˙2 ) + 21 I3 (φ˙ cos θ + ψ) Euler-Lagrange eq in φ: pφ = Euler-Lagrange eq in ψ : pψ = ∂L ∂ φ˙ ∂L ∂ ψ˙ = constant = constant - Summary.11 - January 14, 2015 Advanced Analytical Mechanics-7 - Summary.12 - January 14, 2015 Advanced Analytical Mechanics-7 Relativistic Kinematics Continuous string dτ , time in rest system particle p 2 2 2 2 2 2 (c dτ ) = (c dt) −(dx) −(dy) −(dz) = (c dt/γ) with γ = 1/ 1 − (~v /c)2 , p ˙~r = ~v , and L = −mc2 1 − (~v /c)2 Invariant: The Euler-Lagrange eqn ∂L d ∂L d ∂L − − =0 ∂ψ dt ∂ ψ˙ dx ∂ψ 0 p~ = String: Lagrangian density ρ ˙ 2 τ 02 0 ˙ L(ψ, ψ, ψ ) = ψ − ψ 2 2 ρ Lorentz invariant xν aν 2 d d ψ − τ ψ=0 2 2 dt dx with solutions (k/ω)2 Z ψ(x, t) = ∂L = γm~v ; H(~r, p~, t) = p~ · ~r˙ − L(~r, ~r˙ , t) = γmc2 ∂~r˙ Contravariant four vector xµ = [ct, ~ x]; Covariant four vector xµ Invariant x2 = xµ g µν xν = xµ gµν xν Lorentz Transformation, any four vector A0µ (x0 ) = Λµν Aν (x) resulting finally in the wave equation 2 Four-vector uµ dk f (k) ei(kx−ωt) Proca Lagrangian: 2 ρ ˙ 2 τ 02 µ 2 0 ˙ L(ψ, ψ, ψ ) = ψ − ψ − ψ 2 2 2 = ei(kx−ωt) we get dispersion 2 2 −µ + ρω − τ k = 0 ∂r µ ∂τ = x0ν a0ν for any 2 four vectors µ r = γ ddt = γ[c, ~v ] ~; B ~ =∇ ~ ×A ~; E ~ = −∇φ ~ − ∂ A~ E&M 4-vector: Aν (x) = [φ, A] ∂ct Simplest Invariant action (thus same in any reference system): S=− 2 = = gµν xν pµ = [E/c, p~] = muµ = ρ/τ Z with ψ(x, t) - EDy.1 - Lagrangian: 2 µ mc + eA uµ /c dτ L(~x, ~v ; t) = −mc 2 p 1 − ~v 2 /c2 ~ − e φ(x) − A(x) · ~v /c gives eom d e ~ ~ γm~v = eE + ~v × B dt c H(~x, P~ , t) = q ~ x, t) cP~ − eA(~ 2 + m2 c4 + eφ(~x, t) January 14, 2015 Advanced Analytical Mechanics-8 - EDy.2 - Particle in Electromagnetic Field choice coordinates: particle at position ~ a(t) EM field given by Aµ (x) or Fµν (x) Z S= Z Ldt = Ld4 x with L = c Z Ld3 ~x L is L-invariant L = −mc 2δ 3 1 1 (~x − ~a) − 2 Aµ (x)jµ (x) − F µν Fµν γ c 16πc Traveling Light. Euler-Lagrange equation for fields gives Maxwell ∂µ F µν 4π ν = j c Aµ − ∂ µ ∂ν Aν = Lorentz Invariant: 4π µ j c α = ∂α ∂ = ∂2 ∂(ct)2 − O2 Wave equation for EM-field.
© Copyright 2024