Tissue Engineering and Regenerative Medicine, Vol. 1, No. 2, pp 164-170 (2004) Õ\¢^Õ öªÒ»j ÏR \8 V¢ æº HæJÞ ææÚ~ *` 5 ª+ ;¢ÁJ^¯Áê^* Îv ª¶" Fabrication and Characterization of Pore Size Gradient Alginate Scaffold by a Centrifugation Method Il Kyu Park, Se Heang Oh and Jin Ho Lee* Department of Polymer Science and Engineering, Hannam University, 133 Ojeong Dong, Daedeog Gu, Daejeon 306-791, Korea (Received Oct. 11, 2004; Accepted Oct. 15, 2004) Abstract: It is well recognized that the pore size of scaffolds plays an important role for tissue ingrowth and regeneration: different kinds of cells were shown to have different optimal pore size ranges in the scaffolds for effective cell growth. So, if the tissue scaffold with pore size gradient (i. e., the scaffold with gradually increasing pore sizes along one direction) can be prepared, it will be of particular interest for basic studies of the interaction between tissue cells and scaffolds since the effect of pore size can be examined in a single experiment using one scaffold (pore size gradient scaffold). In recent years, several techniques have been used to fabricate porous polymer scaffolds having 3-dimensional pore structure. However, it is not possible to fabricate scaffolds with pore size gradient from those techniques. In this study, we developed a new method to fabricate pore size gradient scaffolds by a simple centrifugation. We fabricated alginate cylindrical scaffolds with gradually increasing pore size (80~310 µm) along the longitudinal direction by the centrifugation method. In this method, the pore size ranges of the scaffold could be easily controlled by adjusting centrifugal force. The prepared alginate scaffolds were impregnated into 1 wt% chitosan solution to improve cell adhesiveness as well as mechanical strengths. This study demonstrate that the centrifugation method is a simple and effective method to prepare tissue scaffolds with controllable pore size ranges. Key words: Tissue engineering, alginate scaffold, pore size gradient, centrifugation method 1. * V f ;¢ æò ææÚ¢ B r, ^ j ææÚö ² ªÖ~ 6OÊ ÃÎ ê, Ú Ú~ ö~º ¦*ö ~ îÚ ç~ Òj F ê~º © . çf ^~ Ò" ^ ~ WËj ææ"º ªW ææÚ¢ B~º ¢ Zí 7º~ . Ú ç~ Òj *B ÒÏ>º ææÚ Òò~ "B ºf, ç^& Òò ö 6 O~ 3Nö ¢ &æº çj ;W > ®ê 8 î $º ææÚ~ j Ϫ® Ú¢ ~, ÚÚö B êöê "* ç" [z& ¾ >Ú¢ ~ "à > w ì ¢; 8* æ ê ÊÊ ª~ bî Îæ pº Ö> Ú'Wj &^¢ . *Ò 6 Ò ÒÏ> ®º W ª¶Bº ÒjÖ, Ò n~¢, Ò ε -*£Ê, ÒJþöÊr, ç¦ ~, 5 «" ~ 8 Bv " 8Fj Û wÏ~ Ú ç~ f 8ËÒ~ ç&&ê¢ ~ ¾j& Úçj ÚöB Ò~ ÚÚ~ ö¾ *~ö bB ÖÒ Þ~ 8Ëj F æ, Ëç 5 ö~º ©j Ï'b îÚ wÏ^ ª¢ . ¶çB ç~ öj * ç~ ¢> ' 7 O»f, ²ï~ çÞb¦V jº ^¢ ºÂ ªÒ r ^V·j Û~ Ϫ ·b à 5 ªzÊ, Ú ' ªW Òò¢ Ï~ ' 7 1-6 *Tel: 042-629-7391; Fax: 042-629-8841 e-mail: jhlee@hannam.ac.kr 164 öªÒ»j ÏR \8 V¢ æº HæJÞ ææÚ~ *` 5 ª+ , ~ Îæ, V, ê 5 Vê' >Wj jv ï&~& . Ò&ÒRÖ, Ò£Ö 5 ~ 7Ú Ò£&ÒRÖ ®b ,  ªW ª¶º ræJ Þ , ÊÆÖ Ò R¢¶ ® . ª¶¢ W ò V * O» ê> ®º W ª¶~ ãÖöº ª¶¢ Ï~ ®º Ïö ¢; V~ Ö; ².j b ~ ê ².j Ï* ºÂÚº » , &Ê ¢ ÒÏ~ ª¶¢ ccʺ » , ª¶ RF¢ ¦ç ò Ú z ; B~º » , ª¶ Ï ö F>Ú ®º Ï ¢ jÏ ³ö Ú çªÒÊ º » , ª¶¢ ÏÎ Ï" >j b~ Fz Ï b ò ê Úî² ïÿÊ ÿÖ ~º » , ® . O»j Ï~ W ª¶ ææ Ú¢ òº ®Ú J~¢ 7º © 7 ~¾ & V 5 ê . ¯, ^Vî $º ^ ææÚB ^~ ¦OW ± '·/" ö &Ò·Ïj òÒ > ®º ê¢ æò Ú ¢ . ææÚ~ êº ææÚ~ >Wö æËj .¾~æ pº > FÒ ©b rJ^ ® . $ V& > '·/" &Ò·Ïöº FÒ > ®b¾ ^~ ¦OW (¦O&ê) 6²~ ^ W Ë ÚJÞ > ®b, V& ·j> '·/ " &Ò·Ïöº ®Ò~æò ^& ¦O~Vöº FÒ > ® > ® . ¶ ö ~ ^~ WËö ' V º ^î .O N& ¾º ©b >Ú ®b¾, jçræ ö & Úê' º ; . V¢B ^~ ¦OW" '·/ 5 &Ò·Ï, v &æ j òʺ V~ 'z º ç ^~ âNö V· 5 çÒö 7º ¢ > ® . ÿn ç^~ «~ö V, V~ ' j {ã~V * ¢>'b V& B ææÚ¢ '' B~ ÒÏ~& . ~æò, ~¾~ ææ Ú ò ÚöB V& 6ê'b æz , V& B ææÚ ò j VV &j¢ >º ®æj , ''~ ò j êê &j~º "; 7ö ^ > ®º þJNê R *¢ >& ® Ú, ææÚ~ Vö V ç~ ¦O 5 WË ÿj Úê'b ~ 'z~º ç® ÎN' ¢ > ® . V¢B öBº, & n âNö W ª¶ ææÚ B O» öªÒ» (centrifugation method) j wÏ~ V V¢ & æº Öz η~ ræJÞ ææÚ, ¯ Öz » O Ëb V& 6ê'b Ã&~º ææÚ(pore size gradient scaffold)¢ B~, ææÚ ~ >W ;zf ^ zW Ëçj * ÊÆÖb Áê ~&b 8 9 10 11 2. Òò 5 O» þ Òò. W ææÚ¢ B~8 *  ª ¶B, ~öB ºÂB ræJÞ(alginic acid sodium salt; medium viscosity; Sigma Chem. Co., St. Louis, MO, USA)¢ 65% zêR >² ^¿~ çNöB ê ~ ÒÏ~& . ræJÞ~ &vBº CaCl (Oriental Chem. Ind., Korea)¢ ÒÏ~& . $ BB W ææÚ~ >W" ^6OKj ËçÊ8 * Ê ÆÖ (low molecular weight; Fluka, Switzerland)j ÒÏ ~& . 8 8¢ æº HæJÞ ææÚ~ *`. W ræJÞ ææÚ¢ B~8 * * êB, & ·Nö ~ &vB RFFÒç~ ræJÞ¢ B ~& . ¢ * 2 wt%~ CaCl Ïj 500 mL j ö , Ïj ^β¾& (HG-3000, SMT, Japan)¢ Ï~ 24,000 rpmb ;~² v>~B 2 wt%~ ræJÞ >Ïj ® ÎÚNJ "î . " ;j Û RFFÒç~ &vB ræJÞ& ;W>, f "¢ Û CaCl Ïj B~, .B>¢ Ï ~ ^¿Á" ";j 2² >~& . W ææÚ ~ B¢ *, *öB BB RFFÒç~ &vB r æJÞ& >Ï Úö ¾ ªÖ>ê ¶Cv>8¢ Ï~ v>~ & r, >Ïj Ò*j2(PP) Òî~ ¸ 85 mm, çã 14 mm~ : ïï Ö z; :rö & jÚ ê, öªÒ8(Marathon 21K, Fisher Scientific, USA) Úö *~Ê ¢; ²*³ê (1,000, 2,000, 5 3,000 rpm) 5ª* öªÒ~& . ç [j Ê#² B ê, :r Úö '[B RF FÒç~ ræJÞ¢ -76 C~ ïÿ8(NU-6617D34, Nuaire, USA) ÚöB ÿÖÊ, ÿÖB ræJÞ¢ ~ ®º :rj ïÿ8(FDU-540, Eyela, Japan) ÚöB ÿÖ ~ :r~ ¸ OËb 8 & 6ê'b æz~º Öz; ræJÞ ææÚ (ç ã~14 mm, ¸~5 cm)¢ B~& . (Figure 1) ÊÆÖ ê* 9 HæJÞ ææÚ~ *`. B B W ææÚ~ >W" ^6OKj ËçÊ8 * ræJÞ ææÚ Úö ÊÆÖj , ê~ " î . ÊÆÖf >öº Ï>æ p ÖWÏöB Ï >æ, 0.1 M .Öj ÒÏ 1 wt%~ ÊÆÖ >Ï j B~& . öB B W ræJÞ ææÚ ¢ ÊÆÖ >Ïö 30ª* B "î . B Ê ÆÖf ræJÞf ÊÆÖ~ NÚö ~ ræJ 12,13 14,15 16 25 2 17 18 19 2 2 1,20,21 1,22,23 o 24 26 165 ;¢ÁJ^¯Áê^ VB, W º G;~¶ ~º ææÚ~ Z², W f ö êRj & jÚ j7÷~ Z², W º ææÚf öêR & jòê j7÷~ Z², Ò W º W ¦8 ö êR FB (ææÚ~ ö öêR jòê ç) æ æÚ¢ âÞ ê j7÷~ Z²¢ ¾æÞ . ''~ Z² ¢ G;~ *~ êÖö ê«~ ê¢ êÖ~& . 8ê >9 ï&. V~ Vê' bW G;O»bº G; ¾ ²; W ææÚ~ Vê' Wîj G;~ V * Ë~¢ öB ç7 nÁB·~&b, Ë~¢ Instron ËVV(AG-5000G, Shimadzu, Japan)ö J~~ :Ê; W ræJÞ ææÚ~ »Ë þj ¯~& . (Figure 2) ææÚ~ Vê' bW G ;O»f r" ? . :Ê ; B>Úê W ræJÞ ææÚ (çã~14 mm, ¸~5 mm)¢ Ö; ã Òö *~Ê ã~ ¦ö Ë~>Ú ®º "Þ j*® ;Î ê, çã 6 mm (ball) ;~ j &æº V ¦ /j ÒÏ~ 1 mm/min~ F³ê »Ë þj ¯~&, ¦8 ~7-æ; Fj ~& . s 1 2 3 Schematic diagram showing the fabrication of cylindrical pore size gradient scaffold by a centrifugation method. Þ î ö n;~² ;>º ©b rJ^ ® . NÚ& ;WB W ææÚº phosphate buffered saline (PBS, ~pH 7.4)b 2² ^¿~ N Úö ~ êö ^~æ p îj jÖ ®º ÊÆÖ >Ïj B~, "ï~ .B> 3² ^ ¿ ê ÿÖ~ ÊÆÖ êB, ^V·ö ' bWj &æº ææÚ¢ B~& . ÎRæ ª+. B Öz; ræJÞ ææÚ¢ » OËb 5 mm *Ïb ¾¢ :Ê ; B ê, ' :Ê~ î ; 5 ª¢ *¶*ã (SEM; S3000N, Hitachi, Japan)j ÒÏ~ &V~&, î~ 8º æ ªCÊR (IMT, Korea)j Ï~ ªC ~& . $ ' :Ê; ææÚ~ êº Archimedes' öÒö 8. j7÷ (Hubbard specific gravity bottle, Hanil, Korea)j ÒÏ~ G;~& . êÖf r" ? . 27,28 3. 2 Ö # 8 9 HæJÞ ææÚ~ ÎRæ # ê ª+. ræJÞº , î ~öB ºÂ>º ~~ ¢«bB ÚÚ ëW ì ªW, º ; W ËK Ú ©b rJ^ ® . ræJÞº βD-îJÞf α-L-&JÞ *Ú 14 &Ò zÒ Öö ~ ÖB ª¶ 7ÚB, Ca , Sr , 5 Ba " ?f 2& ·N " ; zKj ¾æÚÚ 2& ·N FB >Ï ÚöB ³® & vÖ~ ºj ;W . f ?f ëß Wîj & ææ ræJÞº £b*Ú, ^ ;z 5 &ê 2+ 2+ 29 2+ 30 Porosity (ε) = (W2-W3-Ws) / (W1-W3) Photographs of biaxial tensile test equipment. 166 öªÒ»j ÏR \8 V¢ æº HæJÞ ææÚ~ *` 5 ª+ V·, b¦, çÏ ææÚ Úª¢ö 6 Ò Ï>Úæ ® . öBº, W ææÚ Bö B RFFÒç ~ ræJÞ¢ B~¶ ræJÞ >Ï (2 wt%) j CaCl >Ï Úö BB® ÎÚNJ "B ^β¾ &¢ Ï~ ;~² v> "îº, ";öB R FFÒç~ &vB ræJÞ& ;WNj SEMj Û & V>î .(Figure 3) âöB &vB ræJÞ& R Ff jÝ ;¢ ¾æÚ ®rj { > ®º, º ^β¾&ö ~B CaCl >Ïö V ³ê ²*~º ²Ïò& ò Úæ, Vö ÎÚNJæº r æJÞ >Ï B*'b ²Ïò~ ²*OËb ^ o~² ¾JNJ^ &v>V r^ . $ ''~ ö ªÒ ²*³êö V¢ B>º Öz; ræJÞ ææ Ú~ ~ V ª& ¢öj &V > ®îb, ² *³ê& 1,000, 2,000 5 3,000 rpmb Ã&> V ª& '' 180~325, 135~290 Ò 80~310 µm ' 9Úöj r > ®î .(Figure 3) º ²*³ê 5 ²*>ã (:r~ j¾& ²*>ã ¢)ö ~ ¢æº öK Nö ~ 'Ëb 'B . ² *³ê& æ öK Ã&ö ~ &vB RFç~ r æJÞ& &~² '[>, ÿ¢ ²*³êöBê ²*>ã :r~ jÑ ¦ª~ ãÖ ç&'b z öK ·Ï~ &vB RFç ræJÞ& &~² '[>¾, ²*>ã ç&'b ·f :r~ =¦ª~ ãÖ Ôf öKb RFç ræJÞ & &~² '[>V r^ö Öz; ræJÞ æ æÚ Ú V ª& ¢æ² B . öBº V& ç^ 6O 5 Ãö ~º 'Ëj Úê'b Ò~V * ææÚ B& Ï 'æ, &Ë 9f '~ V¢ &æº, ¯ 3,000 rpm~ ²*³ê¢ ææÚ B~ 'b F ;~ ææÚ~ Îæ 5 bWï&ö Ï~& . V V¢ &æº ææÚ B~ ' öªÒ ³ ê 3,000 rpm~ ²*³ê BB W ræJÞ ææÚ~ V ª¢ {~V *, Öz; æ æÚ¢ Öz~ » OËb 5 mm *Ïb .~& . .B ' :Ê; ææÚ j SEMj Û & V Ö"¢ Figure 4ö ¾æÚîb, æ ªCÊ j Û ªCB V~ ï8" &ÞN¢ Figure 5ö êz~& . Figures 4, 5 5öB , Öz; W ææÚ~ » OËb jÑöB =b R¢ .> ~ V& 80 µmöB 310 µm 6ê'b à &>º ©j { > ®î . º öBê Þ/~&, Öz~ » OËb · Ï~º öK ¸ö V¢ 6²~² >Ú Öz~ = ¦ªb .> V& 6ê'b Ã&~º *ç b > ® . Ö"¦V, V V¢ &æº ææÚ&, & n öªÒ»j Ï ~ Ö ¶£² B F > ®rj { > ®î . ææÚº RFFÒç~ ª¶ B ïB®º ; î B Öê ^WËö j>' Ö ², '·~ R" 5 &Òbî~ VÂ Ï ; ³'b Ö>Ú ®rj &V > ®î . ' :Ê ; ræJÞ ææÚ~ ê ª¢ Archimedes' ö Òö V.~ G; Ö", V G;öBf ? 31-34 2 2 SEM photographs of alginate scaffolds prepared at different centrifugal speed (x 100; *, pore size determined by image analysis). 167 ;¢ÁJ^¯Áê^ SEM photographs of top surfaces of sectioned alginate scaffolds along the longitudinal direction (x 100; *, position code (1, 0~5 mm; 2, 5~10 mm; 3, 10~15 mm; 4, 15~20 mm; 5, 20~25 mm; 6, 25~30 mm; 7, 30~35 mm; 8, 35~40 mm; 9, 40~45 mm; 10, 45~50 mm)). Pore size distribution of sectioned alginate scaffolds Porosity distribution of sectioned alginate scaffolds along the longitudinal direction. along the longitudinal direction . Öz; ææÚ~ jѦªöB =¦ªb .> ê& ~82%öB ~93% Ã&j &V > ®îº, (Figure 6) ©ê $ Öz; ææÚ~ » OË ¸ ö V öK Nö ~ RFFÒç ræJÞ~ ' [ &ê& ¢^B Z Ö"¢ '>Úê . 8ê >9 ï&. V V¢ &æº Öz; ræJÞ ææÚ¢ Öz~ » OËb 5 mm *Ï b .~ :Ê ; ò ê, »Ë þj Û Vê' >Wj G; Ö"¢ Figure 7(A)ö ¾æÚ î . âö ¾æ :f ? Öz; ææÚ~ » O ËöB jÑ ¦ªb ÚJ.> Vê' >W ;z> º ©j &V > ®î . öªÒ»b B>º æ æÚº RFFÒç~ ræJÞ& B ïÎ '[>Ú ® , Öz; ææÚ~ jÑ ¦ªb ÚJ.> V 5 ê& ·jöb ææÚ ÚöB RFFÒç r æJÞ ~ '[ &ê& Ã&ö V¢ ¾æ¾º .G &Ë Ö" . öBº $ V V¢ &æº ræJÞ ææÚ~ Vê' >W" ^zW Ë çj * ræJÞ ææÚ Úö ÊÆÖj , ê ~ "î . ÊÆÖf ÒÒ¢~ ¢«b ²¾ î 168 öªÒ»j ÏR \8 V¢ æº HæJÞ ææÚ~ *` 5 ª+ > ®î . º '[B RFFÒç~ ræJÞ ÊÆÖ" N Ú¢ ;W~8 r^ ©bR $ B . ÊÆÖ ê ¾Ò, êB ÊÆÖ ræJÞ æ æÚ~ ¾ 8öº ~ 'Ëj ~æ pº º ©ê SEMj Û { > ®î . 4. 3Nö' W ææÚ~ 8& · ç ^ ~ 6O" WËö ~º 'Ëj Ò~8* ê RB, 8 V¢ &æº Öz η~ ræJ Þ ææÚ¢ n öªÒ»j Ï~ ¶ £² B~& . öªÒ ²*³ê¢ .bRB Ö z; ææÚ Ú 8 ª¢ . > ®îb, 3,000 rpm~ ²*³êR B~&j r, Öz » OË ~ jÑ ¦*öB = ¦*R .>S 6ê'bR 8& Ã&~& (80~310 µm º*). $, B ræJ Þ ææÚ¢ ^zW  ª¶ ÊÆÖ &³ê Ï (1 wt%)bR , ê®j r ÊÆÖ" RFFÒ ç ræJÞ *~ NÚ ;WbR , 8 ~ æzì 8ê' bW ;zNj { > ®î . Ê ÆÖ êB ræJÞ ææÚ~ ^ 5 çzW {j * in vitro ^V· þ" .j ÿb þf * Ò ê¯ 7ö ® . öB B 8 V ¢ <º ræJÞ ææÚº ' ç ^ ~ 6O, W Ë 5 ç Òö :²ç 8 j {ã~8 * 8. >¯ö Ö Î"' êRB ÒÏF > ®j ©bR 8&B . $Ò~ : ¢^f 2003jê FêÒ~ æ öö ~~ >îbæR ö 6Òãî . (KRF- Load-displacement curves of sectioned alginate scaffolds along the longitudinal direction; (A) non-treated, and (B) chitosan treated. Ö " ?f 7'~~ óîöB áÚæº Êj îj ^z~ áÚæº Â ª¶B, ^ ëW ìb `, Ú'W" ªW öò jî¢ ^ 6O" à j Ëçʺ ^zW >î rJ^ ® . ÖW ç (<~pH 6.0)öB ÊÆÖ Úö ®º -NH ·ÏV& Nz>Ú ·N Ú¢ ;W~æ ræJÞf ?f rNW ª¶f ;*V' ç^·Ïö ~ £² N Ú (ÊÆÖ~ -NH ·ÏVf ræJÞ~ -COO · ÏV Ò~ NÚ)¢ ;W > ® . ræJ Þ ææÚ~ ãÖ, RFFÒç~ ræJÞ& B® B ïÎ '[ò >Ú®º ¢ &æ ®bæ, ^ V· ÚöB ¢¦ ¦Úæº *çj &V > ®î . ÊÆÖ êB ræJÞ ææÚ~ ãÖ, Figure 7(B) ö ¾æ :f ? ÊÆÖ ê>æ pf ræJÞ ææÚf ?f ãËWj ®b` ( Öz; ææÚ~ jÑ ¦ªb ÚJ.> V 5 ê& ·jö ö V¢ ææÚ ÚöB RFFÒç ræJÞ ~ '[ &ê& Ã&~ Vê' bW ;zN), ÊÆÖ ê> æ pf ræJÞ ææÚö j 8ê' >W R Ë ç>î (Figure 7(A)f jv), $ ^V· ÚöB ê *& ¦Úææ p n;>² ;¢ Fæ~º ©j { 35 2 2003-041-D00212). − + 3 Ö V ^^ò 27,28 1. S Yang, KF Leong, Z Du, et al., The design of scaffolds for use in tissue engineering, Tissue Eng., 7, 679 (2001). 2. J Zeltinger, JK Sherwood, DA Graham et al., Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition, Tissue Eng., 7, 557 (2001). 3. JJ Yoo, Tissue engineering: Direction and goals. In: JJ Yoo and IW Lee, eds. Tissue Engineering: Concepts and Applications, Korea Medical Publisher, 1998, pp. 37-44 4. R Langer, JP Vacanti, Tissue engineering, Science, 260, 920 (1993). 5. JA Hubbell, R Langer, Tissue engineering, Chem. Eng. News, March 13, 42 (1995). 6. RM Nerem, A Sambanis, Tissue engineering: from biology to biological substitute, Tissue Eng., 1, 3 (1995). 169 ;¢ÁJ^¯Áê^ matrix deposition, Tissue Eng., 7, 557 (2001). 23. TG van Tienen, RGJC Heijkants, P Buma, et al., Tissue ingrowth and degradation of two biodegradable porous polymers with different porosities and pore sizes, Biomaterials, 23, 1731 (2002). 24. SH Oh, KR Seok, IK Park et al., Fabrication and characterization of variously shaped porous alginate scaffolds by a novel centrifugation method, Biomater. Res., 7, 37 (2003). 25. Y Shirai, K Hashimoto, S Irie, Formation of effective channels in alginate gel for immobilization of anchorage-dependent animal cells, Appl. Microbiol. Biotechnol., 4, 342 (1989). 26. A Chenite, C Chaput, D Wang et al., Novel injectable neutral solutions of chitosan form biodegradable gels in situ, Biomaterials, 21, 2155 (2000). 27. SG Kim, GT Lim, F Jegal et al., Pervaporation separation of MTBE (methyl tert-butyl ether) and methanol mixtures through polyion complex composite membranes consisting of sodium alginate/chitosan, J. Membr. Sci., 174, 1 (2000). 28. O Gåser ∅ d, O Smidsr ∅ d, G Skjåk-Br k, Microcapsules of alginate-chitosan I. Aquantitative study of the interaction between alginate and chitosan: Biomaterials, 19, 1815 (1998). 29. J Yang, G Shi, J Bei et al., Fabrication and surface modification of macroporous poly(L-lactic acid) and poly(L-lacticco-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture, J. Biomed. Mater. Res., 62, 438 (2002). 30. TA Becker, DR Kipke, T Brandon, Calcium alginate gel: A biocompatible and mechanically stable polymer for endovascular embolization, J. Biomed. Mater. Res., 54, 76 (2001). 31. P De Vos, BJ De Haan, GHJ Wolters et al., Improved biocompatibility but limited graft survival after purification of alginate for microencapsulation of pancreatic islets, Diabetologia., 40, 262 (1997). 32. G Klöck, H Frank, R Houben et al., Production of purified alginates suitable for use in immunoisolated transplantation, Appl. Microbiol Biotechnol., 40, 638 (1994). 33. IR Matthew, RM Browne, JW Frame et al., Subperiosteal behaviour of alginate and cellulose wound dressing materials, Biomaterials, 16, 275 (1995). 34. SA Thompson, Method of making a medical device from ionically crosslinked polymer, US Patent, 5,650,116 (July 1997). 35. PR Klokkevold, L Vandemark, EB Kenney et al., Osteogenesis enhanced by chitosan (poly-N-acetyl glucosaminoglycan) in vitro, J. Periodontol., 67, 1170 (1996). 7. JA Hubbell, Biomaterials in tissue engineering, Biotechnology, 13, 565 (1995). 8. J. Kobn, Bioresorbable and bioerodible materials. In: BD Ratner, AS Hoffman, FJ Schoen, JE Lemons, eds. Biomaterials Science: An Introduction to Materials in Medicine. Academic Press, 1996, pp. 64-73 9. L Shapiro, S Cohen, Novel alginate sponges for cell culture and transplantation, Biomaterials, 18, 583 (1997). 10. SV Madihally, HWT Matthew, Porous chitosan scaffold for tissue engineering, Biomaterials, 20, 1133 (1999). 11. T Fujisato, T Sajiki, Q Liu et al., Effect of basic fibroblast growth factor on cartilage regeneration in chondrocyte-seeded collagen sponge scaffold, Biomaterials, 17, 155 (1996). 12. AG Mikos, AJ Thorsen, LA Czerwonka et al., Preparation and characterization of poly(l-lactic acid) foams," Polymer, 35, 1068 (1994). 13. SL Ishanug-Riley, GM Crane, A Gurlek et al., Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL-lactic-co-glycolic acid) foams implanted into the rat mesentery, J. Biomed. Mater. Res., 36, 1 (1997). 14. LD Harris, BS Kim, DJ Mooney, Open pore biodegradable matrices formed with gas foaming, J. Biomed. Mater. Res., 42, 396 (1998). 15. JJ Yoon TG Park, Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts, J. Biomed. Mater. Res., 55, 401 (2001). 16. AG Mikos, MD Lyman, LE Freed et al., Wetting of poly(llactic acid) and poly(dl-lactic-co-glycolic acid) foams for tissue culture, Biomaterials, 15, 55 (1994). 17. C Schugens, V Maquet, C Grandfils et al., Polylactide macroporous biodegradable implants for cell transplantation. II. Preparation of polylactide foams by liquid-liquid phase separation," J. Biomed. Mater. Res., 30, 449 (1996). 18. K Whang, CH Thomas, KE Healy, Novel method to fabricate bioabsorbable scaffolds, Polymer, 36, 837 (1995). 19. LG Cima, JP Vacanti, C Vacanti et al., Tissue engineering by cell transplantation using degradable polymer substrates, J. Biomech. Eng., 13, 143 (1991). 20. TM Freymam, IV Yannas, LJ Gibson, Cellular materials as porous scaffolds for tissue engineering, Progress Mater. Sci., 46, 273 (2001). 21. FJ O'Brien, BA Harley, IV Yannas, et al., Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds, Biomaterials, 25, 1077 (2004). 22. Z Zeltinger, JK Sherwood, DA Graham et al., Effect of pore size and void fraction on cellular adhesion, proliferation, and 170
© Copyright 2024