Technically natural dark energy from Lorentz breaking Diego Blas ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE with Sergey Sibiryakov, arXiv:1104.3579, JCAP Technically natural dark energy from Lorentz breaking Diego Blas ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE with Sergey Sibiryakov, arXiv:1104.3579, JCAP (many transparencies adapted from Sergey) “Dark energy is not only terribly important for astronomy, it’s the central problem in physics. It’s been the bone in our throats for a long time.” Steven Weinberg Dark energy Dark energy missions missions Planck SDSS Euclid DES HETDEX JEDI SNAP WFIRST Vacuum energy? ρΛ, obs ∼ (10−3 eV)4 If interpreted as vacuum energy... (my) Theoretical expectations EFT ? ρvac, th = 0 ρvac, th ∼ Λ 1019 GeV TeV { 4 102 GeV 2 10 MeV Phase transitions Vacuum energy? ρΛ, obs ∼ (10−3 eV)4 If interpreted as vacuum energy... (my) Theoretical expectations EFT ? ρvac, th = 0 ρvac, th ∼ Λ 1019 GeV TeV { 4 102 GeV 2 10 MeV Phase transitions No clear relation between vacuum energy and cosmic acceleration Vacuum energy? ρΛ, obs ∼ (10−3 eV)4 If interpreted as vacuum energy... (my) Theoretical expectations EFT ? ρvac, th = 0 ρvac, th ∼ Λ 1019 GeV TeV { 4 102 GeV 2 10 MeV Phase transitions No clear relation between vacuum energy and cosmic acceleration Dynamical dark energy Assuming ρvac, th = 0 , can we do better? ✴ Technically natural ✴ Predictive power (differs from ΛCDM) ✴ Possibility to embed it in a UV complete theory Technically natural Acceleration related to a light degree of freedom: LQ−ess for DE BUT (∂µ φ)2 m2 φ 2 = − 2 2 m � H0 2 δm = present Hubble rate ∼ gM 2 However: when an additional symmetry appears for m→0 δm ∝ m Hierarchy between m and M is technically natural PseudoGoldstone DE ✦ Small mass protected by shift symmetry φ �→ φ + C - Large expectation values �φ� � MP - Almost indistinguishable from Λ Derivative interactions Higher derivatives � LK−ess = K (∂µ φ) � 2 (∂µ φ)2 (∂µ φ)4 = + + . . . 2 2Λ2 Determines both the cut-off and ρΛ Extremely low cut-off! New ideas seem necessary! New ideas seem necessary! Breaking Lorentz invariance Hořava Gravity Einstein-aether Digression: Status of Hořava gravity Hořava Gravity Non-renormalizability of GR Toy-model: perturbative behavi � �z � � � �z UV �completion −∆ φ −∆ 2 2 L = φ −∂0never +∆ + ∆leaving φ+ −∂0 +∆ + ∆ perturbative 2 M∗ MP M∗2 � �� �� QFT � � Of interaction/free Oi Of Oi 2 ←�→ 2 UV 6 4 IR ω − k − k /M∗ IR UV dh = 0 1 d h = 1 ∗ M P M E Hořava Gravity • Breaking Lorentz invariance: Broken Diffeom. New invariance: foliation preserving Diffeom. i i t → t˜(t) j x �→ x ˜ (x , t) xi t = t1 t = t0 Absolute time and space intervals ds2 = gµν dxµ dxν = N 2 dt2 − γij (dxi + N i dt)(dxj + N j dt) Hořava Gravity ds2 = gµν dxµ dxν = N 2 dt2 − γij (dxi + N i dt)(dxj + N j dt) Hořava Gravity ds2 = gµν dxµ dxν = N 2 dt2 − γij (dxi + N i dt)(dxj + N j dt) ∂γij Kij ∼ ∼ ω γij ∂t (3) i R jkl 2 ∼ k γij ∂N ∼ ki N i ∂x GR Lagrangian can be extended to allow dh = 0 � √ 2 ij � ij 2 �(3) � 2 L = MP N γ Kij K − λ (γij K ) −ξ R − α (∂i log(N )) + � �� � ∂02 Low energy High energy ∆ ... + (Renormalizable) M�4 2(3) λ� = ξ � = 1 GR: � α =0 � R ω 2 − k2 − k6 /M∗4 Hořava Gravity: Covariant Form • The same physics described by ∂µ ϕ uµ ≡ √ ∂α ϕ∂ α ϕ t¯ = (1, 0, 0, 0) = ∂µ t x L = LEH + √ E < M� � µ ϕ = ϕ1 µ ϕ = ϕ0 2 2 ν Low energy� ν µ −g λ(∇ uµ ) + α (u ∇ν uµ ) + β ∇µ uν ∇ u Scalar-tensor theory similar to Einstein-Aether! ϕ gµν uµ u = 1 + extra term µ √ Cut-off scale Λ ∼ MP α Hořava Gravity: Covariant Form • The same physics described by ∂µ ϕ uµ ≡ √ ∂α ϕ∂ α ϕ t¯ = (1, 0, 0, 0) = ∂µ t KHRONON L = LEH + √ E < M� � µ x ϕ = ϕ1 µ ϕ = ϕ0 2 2 ν Low energy� ν µ −g λ(∇ uµ ) + α (u ∇ν uµ ) + β ∇µ uν ∇ u Scalar-tensor theory similar to Einstein-Aether! ϕ gµν uµ u = 1 + extra term µ √ Cut-off scale Λ ∼ MP α Hořava Gravity: Constraints Assumption: Matter universally coupled (no L-violation, WEP-violation in matter sector) → − r h0i → − v → − −2 v ∼ 10 h00 � PPN i i 2 M⊙ α2 (x v ) = −GN 1− r 2 r2 PPN α1 M⊙ i = GN v 2 r � Preferred frame effects PPN α1 = −4(α − 2β) P P N (α − 2β)(α − (λ − 1) + 3β) α2 = 2(λ − 1 − β) ∼ 10 −4 ∼ 10 −7 Hořava Gravity: Constraints Assumption: Matter universally coupled (no L-violation, WEP-violation in matter sector) → − r h0i → − v → − −2 v ∼ 10 h00 � PPN i i 2 M⊙ α2 (x v ) = −GN 1− r 2 r2 PPN α1 M⊙ i = GN v 2 r � Preferred frame effects PPN α1 = −4(α − 2β) P P N (α − 2β)(α − (λ − 1) + 3β) α2 = 2(λ − 1 − β) α = 2β Identical to GR at PN! ∼ 10 −4 ∼ 10 −7 Hořava Gravity: Constraints II No Gravitational Cerenkov: 2 ct > 1, 2 cs >1 Homogeneous cosmology GN /Gc = 1 + O(α) −2 G /G = 1 + O(10 ) BBN N c Hořava Gravity: GWs Radiation damping in binaries gravitational waves E˙ = −GN Iij = � � ... 2 A ... 2 ( I ij ) +B( I kk ) 5 � 1 d x ρ x x − δij xk xk 3 4 i j A = 1 + O(α) B = O(α) � � A = 1, B=0 Bounds O(.01) News & Open issues • PPN&GWs • Black-holes at low-energies! • Natural recovery of Lorentz invariance • More phenomenological tests • Strong fields, black holes singularities • Loop computation • Black hole thermodynamics News & Open issues G L O Ve S • PPN&GWs • Black-holes at low-energies! • Natural recovery of Lorentz invariance • More phenomenological tests • Strong fields, black holes singularities • Loop computation • Black hole thermodynamics Back to Dark Energy ΘCDM Adding a field with exact shift symmetry Θ �→ Θ + C Derivatively coupled! (∂ν Θ)2 LΘ = + µ2 uν ∂ ν Θ 2 Stable under radiative corrections: breaks Θ �→ −Θ High UV cutoff (and UV completion √ by Hořava gravity) Λ ∼ Mα ≡ MP α Homogeneous Cosmology Friedman equation 8πGc 2 H = 3 � � ˙ Θ 8πGc + ρm = 2 3 2 � Scalar equation � d� 3˙ a Θ + µ2 a3 = 0 dt 4 µ + ρm 2 � Naturally small! 2 ˙ Θ = −µ 4 ρΘ = µ /2 ω = −1 NB: If ρmat = 0 Minkowski is a solution! (tachyonic instability) ΘCDM: Perturbations In a fixed expanding background 2 ˙ ¯ Θ = −aµ ¯ +ξ Θ=Θ ϕ=t+χ for subhorizon modes k � H/a [Lχ + LΘ ] (2) = 2 Mα 2 2 (∂i χ) ˙ − 2 2 Mα c χ 2 2 β cχ = ˙ +λ α 4 µ 2 (∆χ) − (∂i χ) 2 2 ξ˙2 (∂i ξ)2 2 + − − µ ∂i χ∂i ξ 2 2 effectively a mass term for khronon ΘCDM: Perturbations II √ ✴Spectrum k � kc ≡ µ /Mα ∼ H0 / α 2 2 ωχ = 2 2 cχ k , 2 ωξ = 2 2 cξ k , √ ✴Spectrum k � kc ≡ µ /Mα ∼ H0 / α 2 2 ω+ = 2 kc + 2 (cχ + 1)k 4 (β + λ)k 2 ω− = αkc2 2 gapped mode slow mode c− ∼ k/kc � 1 expect enhancement of structure formation at large scales Perturbations: ΘCDM vs ΛCDM Scalar part (also valid for Einstein-aether) 2 2 2 i j ds = a (t)[(1 + 2φ)dt − (1 − 2ψ)δij dx dx ] • Solve numerically linear equations with , Ωcm = 0.25 , ΩDE = 0.75 (assuming Lorentz-invariant dark matter) Ωγ = 5 · 10 • Find • Plot −5 δρcm φ, ψ , δ ≡ ρcm Pφ (k) ∆φ (k) = −1 PφΛCDM (k) Pδ (k) ∆δ (k) = −1 PδΛCDM (k) 1 0.1 0.1 Δδ Δφ 1 10-2 10-3 10-4 10-3 a b c d 0.001 10-2 0.01 -1 10-4 0.1 a b c d 0.001 k (h Mpc ) α = 2β { α2P P N = 0 a b c d √ -1 0.1 k (h Mpc ) α β λ‘ 2 · 10−2 10−2 10−2 2 · 10−3 10−3 10−3 10−4 10−4 10−4 0 10−4 2 · 10−4 0.01 � kc (h Mpc−1 ) k1/2 (h Mpc−1 ) 5.1 · 10−3 1.3 · 10−3 1.6 · 10−2 2.3 · 10−3 7.1 · 10−2 4.9 · 10−3 5.0 · 10−2 4.1 · 10−3 tails6 and the respective α at corresponding k1/2 = tokthe c Hcurves 0 + logarithmic Table Peaks 1: Model∼ parameters in Fig. 5 and Fig. values of momenta kc , k1/2 . Anisotropic stress in ΘCDM 0.1 a b c (φ-ψ)/φ 10-2 10-3 10-4 10-5 0.001 0.01 k (h Mpc-1) NB. Non-zero if β �= 0 Perturbations evolution in ΘCDM k/H0 = 4 k/H0 = 15 1 1 0.8 0.8 0.6 0.6 0.4 0.4 φ φΛCDM 0.2 0 0.02 k/H0=4 0.2 0 0.02 φ−ψ 0.01 0.01 0 0 0 φ φΛCDM 1 2 3 H0t α = 0.02 , H0t0 φ−ψ 0 β = 0.01 , 1 2 H0t λ� = 0.01 3 H0t0 Conclusions Breaking of Lorentz invariance + scalar with shift symmetry = technically natural dark energy (ΘCDM) The setup can be embedded into Hořava gravity Predictions of ΘCDM: w = −1 , growth of structure is enhanced and effective anisotropic stress appears at scales of a few hundred Mpc OUTLOOK Detailed simulations with comparison against current and future data (current data on power spectrum at percent level!) Consequences of possible Lorentz violation in the dark matter sector
© Copyright 2025