6. Gamma Function and Related Functions PHILIPJ. DAVIS Contents Page Mathematical Properties. . . . . 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. . Gamma Function. . . . . . Beta Function . . . . . . . Psi (Digamma) Function. . . Polygamma Functions. . . . Incomplete Gamma Function. Incomplete Beta Function. . Numerical Methods . . . . . . . . . . . . . . . . . . . . . . 255 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 258 258 260 260 263 . . . . . . . 263 . . . . . . . . . . 6.7. Use and Extension of the Tables. . . . . . . . . . . . . 6.8. Summation of Rational Series by Means of Polygamma Functions. . . . . . . . . . . . . . . . . . . . . . . . . 263 264 . . . . . . . . . . . . 265 Table 6.1. Gamma, Digamma and Trigamma Functions (1 5 s l 2 ) . . 267 References. . . . . . r(x),~n r(x), , . . . . . . . , +(z),+'(z), ~=i(.oo5)2, IOD Table 6.2. Tetragamma and Pentagamma Functions (1 5 x 5 2 ) . . . +"(x), $J3'(2),~=1(.01)2, 1OD Table 6.3. Gamma and Digamma Functions for Integer and HalfInteger Values ( l l n 5 1 0 1 ) . . . . . . . . . . . . . . . . . . r(n), 11s l/r(n), 9s r(n+$), 8s 27 1 272 +(n), IOD n!/[(2?r)h"+3]~",8D Inn-+@), 8D n=1(1.)101 Table 6.4. Logarithms of the Gamma Function (1 I loglo r(n>, 8s log10 r(n+#), 8 s n 5 101). . . . . . 274 log10 r(n+$), 8s In r(n)-(n-$) lnn+n, 8D log10 r(n+$), 8s n= l(1) 101 National Bureau of Standards. 253 254 GAMMA FUNCTION AND RELATED FUNCTIONS Table 6.5. Auxiliary Functions for Gamma and Digamma Func. . Table 6.6. Factorials for Large Arguments ( 1 0 0 5 n S 1000) . . . . Page 276 . 276 Table 6.7. Gamma Function for Complex Arguments. . . . . . . . 277 n!, n= 100(100) 1000, 20s In r(z+iy), 2=1(.1)2, y=0(.1)10, 12D Table 6.8. Digamma Function for Complex Arguments . . . +(z+iy),2=1(.1)2, y=0(.1)10, . . . . 288 5D %‘+U+iy),10D B’+(l+iy)-ln y, y l = . l l (-.Ol)O, 8D The author acknowledges the assistance of Mary Orr in the preparation and checking of the tables; and the assistance of Patricia Farrant in checking the formulas. =.57721 56649. . . Y is known as Euler's constant and is given to 25 decimal places in chapter 1. r(z) is single valued and analytic over the entire complex plane, save for the points z=-n(n=O, 1, 2, . . . ) where it possesses simple poles with residue (- 1) "/n!. Its reciprocal i/r(z) is an entire function possessing simple zeros at the points z= -n(n=O, 1, 2, . . .). -=-s Hankel's Contour Integral 6.1.4 1 (-t)-'e-'dt i r(z) 2, (k<l c FIGURE6.1. Gumma function. , y-r(z), n(z)=z!=r(z+i) 6.1.10 r (n+ 3) =1.5.9.13.4". . (4n-3) r(t> r(+)=3.6256099082. . . 1.4-7.10. . . (3n-2) 6.1.11 r(n+#)= 3" 6.1.12 r(n+1)=1.2.3 . . . (n-l)n=n! 6.1.7 lim -=o= 1 z+, r(-z) 1 (-n-l)! r(n+$) = I-()) = 2 s me-12dt=&=1.77245 38509 . . . =(-3)! 0 1-3-5-7... (2n-1) 2" 2.5.8-11.. . (3n-1) 6.1.13 l"(n+#)= 3" r (3) r(3) r(#)=i.3aii 79394. . . (n=O, 1, 2, . . .) Fractional Values 6.1.8 r (4) r($)=2.67893 85347 . . . Integer Values 6.1.6 Y=l/r(4 r(3/2)=$,*=.8~622692%. . . =(3)! Factorial and II Notations 6.1.5 - - -, 6.1.9 =) The path of integration C starts at + QD on the real axis, circles the origin in the counterclockwise direction and returns to the starting point. - * 6.1.14 r(n+i)= 3.7.11.15.4". . (4n-1) Ut) r($)=i.22541 67024 . *See page 11. . . 255 256 GAMMA FUNCTION AND RELATED FUNCTIONS Recurrence Formulas 6.1.15 6.1.29 r(i~)r(-iy)=ir(i~)iz=9r y sinh 7ry r(z+i)=Zr(Z)=Z!=Z(Z-i)! 6.1.16 r(n+~)=(n-il+z)(n-2+~) . . . (i+z)r(i+z) = (n- 1+ z)! 6.1.31 r (1 +iy)r (1-iy)= Ir (1 +iY) (L“ ?/ sinh ry . . (l+z)z! =(n-l+z)(n-2+2). Reflection Formula 6.1.17 r(z>r(i-z)=-zr(-z)r(z)=t =J=, a c 7rz tz-1 0 -dt l+t (O< 9 2 < 1) Power Series 6.1.33 In r (1+ z)= -In (1 +z) +z (1 -7) +5( - ~ ) ~ ~ ~ ( ~ (14<2> ~ - ~ l ~ ” / ~ Duplication Formula n-2 6.1.18 r(2~)=(2~):+ 222-3 r(z)r(z++) Triplication Formula {(n)is the Riemann Zeta Function (see chapter 23). Series Expansion * for 1 /r(2) 6.1.19 r(3z)= ( 2 ~-1) 35’4r (2)r (z+#r(z++) 6.1.34 Gauss’Multiplication Formula k Binomial Coefficient Pochhammer’sSymbol 6.1.22 @lo= 1, (2),=2(2+1)(2+2) . . . (z+n-l)=- r(z+n) r (2) Gamma Function in the Complex Plane 6.1.23 6.1.24 r@)=r); In r(Z)=In r(z) arg r(z+l)=arg r(z)+arctan X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 ck 1.00000 0.57721 -0.65587 -0.04200 0. 16653 -0.04219 -0.00962 0.00721 -0.00116 -0.00021 0.00012 -0.00002 -0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000 0.00000 -0.00000 -0.00000 0.00000 0.00000 00000 56649 80715 26350 86113 77345 19715 89432 51675 52416 80502 01348 12504 11330 02056 00061 00050 00011 00001 00000 00000 00000 00000 00000 00000 00000 000000 015329 202538 340952 822915 555443 278770 466630 918591 741149 823882 547807 934821 272320 338417 160950 020075 812746 043427 077823 036968 005100 000206 000054 000014 000001 2 The coefficients ck are from H. T. Davis, Tables of higher mathematical functions, 2 vols., Principia Press, Bloomington, Ind., 1933, 1935 (with permission) ; with corrections due to H. E. Salzer. 257 GAMMA FUNCTION AND RELATED F"CX'I0NS Error Term for Asymptotic Expansion Polynomial Approximations' 6.1.35 6.1.42 01x51 r (x+ 1) =z! = 1+-alx+ -a& +62+ag4+-a&+ E(Z) 55x10-6 57486 46 .95123 63 =-.69985 88 ~l=-. ~ 4 = Uz= U6=-. ~ 3 If R,(z)= In r (z)-(z-# In z+z-+ In ( 2 ~ ) ,42455 49 10106 78 -5 ,,12rn(2rn--l)z B2m an--l then where bl=-. 57719 bs= .98820 b3= -. 89705 bq= ,91820 1652 5891 6937 6857 75670 be= .48219 b7= -. 19352 bs= .03586 bs=-. 4078 9394 7818 8343 Stirling's Formula K(z)=upperU l bound(z2/(u2+z3) O I For z real and positive, R, is less in absolute value than the first term neglected and has the same ign. 6.1.43 6.1.37 9th r(iy)=%?ln r(-iy) -& In (2.) -w-+ln y, (y++ 6.1.44 A n r(iy)=arg r(iy)=-arg = - A n r(-iy) r(-iy) Asymptotic Formulas 6.1.39 r(-az+b) -l/Z;;e-(U(-az)(U+b--t (la% 4<a, -a>()> 6.1.M In r(z)-(z-+) +z m In z-z++ B2m 2rn(2m-1)2*-' I n (2~) (z+m in larg z~<T) For B, see chapter 23 6.1.46 6.1.47 6.1.41 In r(z)-(z-& 1 In z-z++ In (%)+---1 122 360z3 From C. Hmtings, Jr., Approximations for digital computers, Princeton Univ. Press, Princeton, N.J., 1955 (with permission). as z+m along any curve joining z=O and Z= providingz# --a, ---a-1, . . . ; zf --b, -b-1, . . . . m, (2n)! --- 1 2n r(n++) 22n(n!)2-~ (n)=rtr(n+i) 1 1 1 -&j [I-%+=*- - * * * 1 FIGURE 6.2. Psi function. y = $(z) = d In r kc)/& (n+ OJ 1 Some Definite Integrals 6.1.50 Integer Values In r(z)=Jm[(z-l) T (92 > 0) ( 9 2 > 0) e+- e;‘~;~~’‘]- =(z-+) In z-z++ In 21r m arctan (t/z)dt +2J, e”8-1 6.2. Beta Function ts-1 (14-1 dt--Jm&;*+. 6.3.3 dt 6.3.4 #(n++)=-r-21n2+2 6.2.2 ) :+ 1 2n 1 l aw>o> (n 2 1) B(z,w)= r (z)r (w)=B(w,z) r(z+w) #(z)=d[ln r (z)]/~z= r’(~)/r (z) 4 Some authors employ the special double factorial notation as follows: ( 2 4 ! 1 =2.4.6 . . . ( 2 4 = 2 % i ( h - 1 ) ! I =1.3.5. . . ( 2 n - i ) = ~ 2”r(n++) d 680meauthorswrite$(z)=~lnr(~+1) andeimilarlyfor the polygamms functions. I+,+..( 6.3. Psi (Digamma) Function E6.3.1 Ck-’ (n22) k=1 Fractional Values = 2 r (sin t)s-1 (cos t ) t w - 1 dt ( 9 2 > 0, n-1 #(l)=-’~, #(n)=-r+ #(+)=-7-2 In 2=--1.96351 00260 21423 . . . 6.2.1 B(z,w)=J 6.3.2 Recurrence Formulas 6.3.5 t(Z+ l) = +(Z) 1 +; 6.3.6 l + 1 ‘(n+‘I= (n -1) +z (n-2) +z +... 1 1 +i&+,+,+9(1+4 259 GAMMA RTNCTION AND RELATED FUNCTIONS 6.3.19 Reflection Formula +(l-z)=+(z)+* cot *z 6.3.7 Duplication Formula 1 =In y+-+- +(22)=Mz)+++(z+&) +In 2 6.3.8 Psi Function in the Complex Plane - +GI=*(z> 6.3.9 9+(iy>=W+(-iy)=W+(l +iy)=W+(l -iy) 6-3-11 Y+(iy)=&/-'+#,~ coth xy 6.3.12 Y+(++iy)=&r tanh ?ry 63-13 1 j$(l+iy)=---+# 2Y =y ~ ~ 0 rv t h n-1 Series Expansions 6.3.14 +(l+~)=-r+C(-l)"~(n)~~-' (Iz1<1) n-2 &€ cot e-(1-9) -'+ 1-7 6.3.20 -n-1 5It(2n+ 1) -11ZSA - Zeros of $(z) I + l . 462 -0.504 -1.573 -2.611 -3.635 -4.653 -5.667 -6.678 +O. 886 -3.545 +2.302 -0.888 +O. 245 -0.053 +o. 009 -0.001 Zo=1.46163 21449 68362 r(xo)=.88560 31944 10889 6.3.15 +( 1 +2) =&-1- 9 6 g (n2+yS) -1 .. (Y+OJ) Extremaoof r(z) 6.3.10 1 +-+.1 12oy4 2 m Y 6 (Iz I <2) zn=-n+(ln n)-'+o[(ln n)-*] Definite Integrals 6.3.21 6.3.16 (~#-1,-2,-3, ...) 6.3.17 9+(l+iy)=l-r-- 1 l+y2 +g(- l)"+'[r(2n+1) -l]y2' n=1 = -r+ y2 c n-'(n*+yS) (IYl<2) OD -1 a-1 (- Y< OJ -1 Asymptotic Formulae 6.3.18 1 -In z-s-n-l =In z----1 22 = Bz, c- 2nz2" 1 1 1 1 2 9 + 1 2 0 2 4 - ~ 6+ . . . (z+- in lergzl<*) 6From W. Sibagaki, Theory and applications of the gamma function, Iwanami Syoten, Tokyo, Japan, 1952 (with permission). GAMMA FUNCTION AND RELATED FUNCTIONS 261 d FIGURE6.3. Incomplete gamma function. ?*(a,%)=- r r(a) %-a o e-Lto-1dt From F. G. Tricomi, Siilla funzione gamma incompleta, Annali di Matematica, IV, 33, 1950 (with permission). *See page n. GAMMA FUNCTION AND RELATED FUNCTIONS 261 d FIGURE6.3. Incomplete gamma function. ?*(a,%)=- r r(a) %-a o e-Lto-1dt From F. G. Tricomi, Siilla funzione gamma incompleta, Annali di Matematica, IV, 33, 1950 (with permission). *See page n. 262 GAMMA FUNCTION AND RELATED F"CT1ONS 6.5.5 6.5.16 Probability Integral of the +Distribution 6.5.17 6.5.18 6.5.6 (Pearson's Form of the Incomplete Gamma Function) 6.5.19 6.5.20 Recurrence Formulas m 6.5.7 C(z,a)=l tu-1 cos t dt (L@'a<l) 9e-" P(a+l, z)=P(a, z)---r(a+l> 6.5.21 m 6.5.8 S(z,a)=$, ta-l sin t dt (9'a<l) 6.5.9 nm 6.5.22 y (a+1,z)=uy(a,z) 6.5.23 V*(u-l,z) e-' =m*(u,z)+-r (a) Derivatives and Differential Equations 6.5.24 6.5.11 Incomplete Gamma Function aa a Confluent Hypergeometric Function (eee chapter 13) 6.5.12 6.5.26 b" y(u,z)=a-lzue-tM(l, l+a,z) =u-'zU ax" [x-T(u,s)~= (-i)nz-a-qa+n,z) (n=O, 1,2, . . .) M(a, l+a,-z) 6.5.27 b" Special Values bX" [e"z"~*(a,x)]=e"z"-"y*(a-n, z) 6.5.13 (n=O, 1,2,. . .) =1-e,,- (2)e-2 For relation to the Poisson distribution, see 26.4. 6.5.14 6.5.15 r*(-n, z)=z" I' (0, z)=le-'t-'dt=El (5) Series Developmente 6.5.29 263 GAMMA FUNCTION AND RELATED FUNCTIOXS Definite Integrals 6.5.36 * Continued Fraction 6.5.31 6.6. Incomplete Beta Function Asymptotic Expansions 6.6.1 Br(a,b)=J2 6.6.2 I r (a,b) 6.5.32 0 t~-'(l--t)b-'d2 = Br (ab)/B(a,b) For statistical applications, see 26.5. Symmetry Suppose Rn(a,c")=un,,(a,z)+ . . . is the remnintlcr nftcr n terms in this series. Then if a , ~ nrc real, w e 11avr for n>a-2 !Iin(a,z)!I niitl lun+,(a,z)l I,(a,b)=l --I,-r(b,u) 6.6.3 Helation to Binomial Expansion For binomial distribution, see 26.1. sign I?,(a,z) =sign u,<+,(a,z). Recurrencc Formulas 0 for a>1 6.6.5 Ir(U,b)=XIr(U- 6.6.6 (a+b-a)I,(a,b) 1,b) + (l-~)IZ(a,b- 1) =a(l-z)12(a+ 1,b- l>+bI,(a,b+ 1) 1 for Osa<1 6.5.35 6.6.7 (~+b)l,(a,b)=al,(a+ 1,b)+bI,(a,b+ 1) Relation to Hypergeometric Function (z+m in I nrg + <)zlr 6.6.8 B,(a,b)=a-'~'c"F(a,l-b; a + l ; Z) Numeric:a1 Methods 6.7. Use and Extension of the Tables Example 1. Compute r(6.38) to 8s. Using cc 6.1.16 niitl Table 6.1 wc the r ~ w i r r ~ ~ i irchtioii 1 1 avc, r (6.38)= [(5.38)(4.38)(3.38)(2.33)(1.38)]r (1.38) = 232.43671. Example 2. Compute In r(56.38), iisiiig Table 6.4 niid liiicnr iiitrrpolation iii \\-e liavc j... In r(56.38) = (56.38-3) In (56.38)- (56.38) +j 2 (56.38) The crror of liiicar intrrpolation in the table of tlic function f 2 is smaller than lo-' in this region. Hence, f2(56.38)= .92041 67 and In I'(56.38) = 169.85497 42. Direct interpolation in Table 6.4 of log,, r(n) climiiiatcs tlic necessity of employing logarithms. HOWCVP~, tlic rrror of liiicar intcrpolation is .002 so tltnt log,, r(n) is obtained with a rclativc error of 10-5. *See page 11. 264 GAMMA FUNCTION AN Example 3. Compute $(6.38) to 8s. Using the recurrence relation 6.3.6 and Table 6.1. =1.77275 59. Example 4. Compute (L(56.38). Using Table 6.3 we have $(56.38)=ln 56.38-j3(56.38). The error of linear interpolation in the table of the function f3 is smaller than 8XlO-' in this region. Hence,f3(56.38)=.00889 53and$(56.38)= 4.023219. RELATED FUNCTIONS 6.8. Summation of Rational Series by Means of Polygamma Functions An infinite series whose general term is a rational function of the index may always be reduced to a finite series of psi and polygamma functions. The method will be illustrated by writing the explicit formula when the denominator contains a triple root. Let the general term of an infinite series have the form Example 5. Compute In I'(1-i). From the reflection principle 6.1.23 and Table 6.7, In r(1-i) =In r(l+i) = -.6509+.3016i. Example 6. Compute In F(+++i). Taking the logarithm of the recurrence relation 6.1.15 we have, In r(&++i) =In r (#++i) -In (*+&i) --.23419+.03467i -(& In *+iarctan 1) = .11239- .75073i where p(n) is a polynomial of degree m + 2r+3s -2 at most and where the constants a,, pi.,and yf are distinct. Expand un in partial fractions as follows The logarithms of complex numbers are found from 4.1.2. Example 7. Compute In I'(3+7i) using the duplication formula 6.1.18. Taking the logarithm of 6.1.18, we have -4 In 2r=- .91894 (#+7i)In 2= 1.73287+ 4.852036 In r(#+$i)=-3.31598+ 2.32553i In r(2+4$=-2.66047+ 2.938693 In r(3+7i) =-5.16252+10.11625i OD Then, we may express n-1 u, in terms of the constants appearing in this partial fraction expansion as follows Example 8. Compute In I'(3+7i) to 5D using the asymptotic formula 6.1.41. We have In (34-79 =2.03022 15+1.16590 45i. Then, (2.5+7i) In (3+7i)=-3. 0857779+17.1263119i - (3+7i) = -3.00000007. oooooooi 4 In ( 2 ~ ) = .9189385 [12(3+7i)]-'= .00431037 .01005753 -[360(3+7i)3]-i= . 0000059. 0000022i In r(3+7i)=-5. 16252 +io. 11625i Higher order repetitions in the denominator are handled similarly. If the denominator contains 265 GAMMA FUNCTION AND RELATED FUNCTIONS only simple or double roots, omit the correaponding lines. Therefore S= +$'(li) =.013499. 16~(1)-16$(1~)+$'(1) Example 9. Find - Example 11. 1 1 (see also 6.3.13). n-l (n2+1) (n*+4) m Evaluate 8 = c Since 1 We have, we have a1=1, a2=3, as=*, al=*, &=-l, *=#. i e=-, -i6 Hence, al=-,6 Thus, 8= -)$(2) a1=i, +$(13) -#$(It) =.047198. i az=-i, aa=2i, a,=-2i, and therefore Example 10. m -i &=-12 ' a 4 = 3 s=- --z 1 [$(1 +i)-$(1 -ill 6 +ai [$(1+2i) -$(1-2i)l. By 6.3.9, this reduces to 1 Y$(l+i)--61 9$(1+2{). 3 8=- we have, From Table 6.8, s=.13876. References Texts Tables [6.1] E. Artin, Einfiihrung in die Theorie der Gammsfunktion (Leipzig, Germany, 1931). [6.9] A. Abramov, Tables of r(z) for complex argument. Translated from the Russian by D. G. Fry (Pergamon Press, New York, N.Y., 1960). In r(z+iy), z=O(.Ol)lO, y=0(.01)4, 6D. [6.2] P. E. Bohmer, Differenzengleichungen und bestimmte Integrale, chs. 3, 4, 5 (K. F. Koehler, Leipzig, Germany, 1939). 16.31 G. Doetsch, Handbuch der Laplace-Transformation, vol. 11, pp. 52-61 (Birkhauser, Basel, Switzerland, 1955). [6.4] A. Erdblyi et al., Higher transcendental functions, vol. 1, ch. 1, ch. 2, sec. 5; vol. 2, ch. 9 (McGrawHill Book Co., Inc., New York, N.Y., 1953). [6.5] C. Hastings, Jr., Approximations for digital computers (Princeton Univ. Press, Princeton, N.J., 1955). [6.6] F. Losch and F. Schoblik, Die Fakultiit und verwandte Funktionen (B. G. Teuhner, Leipzig, Germany, 1951). [6.7] W. Sibagaki, Theory and applications of the gamma function (Iwanami Syoten, Tokyo, Japan, 1952). [6.S] E. T. Whittaker and G. N. Watson, A course of modern analysis, ch. 12, 4th ed. (Cambridge Univ. Press, Cambridge, England, 1952). I n [6.10] Ballistic Research Laboratory, A table of the factorial numbers and their reciprocals from l ! through lOOO! to 20 significant digits. Technical Note NO. 381, Aberdeen Proving Ground, Md., 1951. [6.11] British Association for the Advancement of Science, Mathematical tables, vol. 1, 3d ed., pp. 40-59 (Cambridge Univ. Press, Cambridge, England, 1951). The gamma and polygamma functions. Also l + l ' l o g l D (t)!dt, z=O(.Ol)l, 10D. [6.12] H. T. Davis, Tables of the higher mathematical functions, 2 vols. (Principia Press, Bloomington, Ind., 1933, 1935). Extensive, many place tables of the gamma and polygamma functions up to $(4)(z)and of their logarithms. [6.13] F. J. Duarte, Nouvelles tables de log,, nl 8,33 d6cimales depuis n = l jusqu'h n=3000 (Kundig, Geneva, Switzerland; Index Generalis, Paris, France, 1927). 266 GAMMA FUNCTION AND RELATED FUNCTIONS [6.14] National Bureau of Standards, Tables of nl and r(n+& for the first thousand values of n, Applied Math. Series 16 (U.S.Government Printing O5ce, Washington, D.C., 1951). nf, 16S;r(n+&, 8s. [6.15] National Bureau of Standards, Table of Coulomb wave functions, vol. I, pp. 114-135, Applied Math. Series 17 (U.S. Government Printing O5ce, Washington, D.C., 1952). 9[ryi+is)/r(1 +is],9 =o(.oo5)2 (.oi)6 (.02)1o(.1 20 (.2)60(.5)1 10,lOD; apg r (1+is),s = O(.el)1 (.02) 3 (.05)10(.2)20(.4)30(.5)85, 8D. [6.16] National Bureau of Standards, Table of the gamma function for complex arguments, Applied Math. Series 34 (U.S. Government Printing O5ce, Washington, D.C., 1954). In r(z+iy), z=d(.l)lO, y=0(.1)10, 12D. Contains an extensive bibliography. (6.171 National Physical Laboratory, Tables of Weber parabolic cylinder functions, pp. 226-233 (Her Majesty’s Stationery Office, London, England, 1955). Real and imaginary parts of In r(ik+$ia), k-0(1)3, a = 0 (.1) 5(.2)20, 8D ; (IF(4 + +ia)/r(++ tis) 1) -I” ~=0(.02)1(.1)5(.2)20, 8D. [6.18] E. S. Pearson, Table of the logarithms of the complete r-function, arguments 2 to 1200, Tracts for Computers No. VI11 (Cambridge Univ. Press, Cambridge, England, 1922). Loglo r(p), p=2(.1) 5(.2)70(1)1200, 10D. [6.19] J. Peters, Ten-place pendix, pp. 58-68 New York, N.Y., (n!)-’, n=1(1)43, 18D. logarithm tables, vol. I, Ap(Frederick Ungar Publ. Co., 1957). nl, n=1(1)60, exact; 54D; Log,o(nl), n=1(1)1200, (6.20) J. P. Stanley and M. V. Wilkes, Table of the reciprocal of the gamma function for complex argument (Univ. of Toronto Press, Toronto, Canada, 1950). Z= -.5( .01).5, y=O(.Ol)l, 6D. I6.211 M. Zycakowski, Tablice funkcyi eulera i pokrewnych (Panstwowe Wydawnictwo Naukowe, Warsaw, Poland, 1954). Extensive tables of integrals involving gamma and beta functions. For references to tabular material on the incomplete gamma and incomplete beta functions, see the references in chapter 26.
© Copyright 2025