PHYC 160 Conservation of Energy Lecture #19 Elastic potential energy • A body is elastic if it returns to its original shape after being deformed. • Elastic potential energy is the energy stored in an elastic body, such as a spring. • The elastic potential energy stored in an ideal spring is Uel = 1/2 kx2. • Figure 7.14 at the right shows a graph of the elastic potential energy for an ideal spring. Situations with both gravitational and elastic forces • When a situation involves both gravitational and elastic forces, the total potential energy is the sum of the gravitational potential energy and the elastic potential energy: U = Ugrav + Uel. • • Figure 7.15 below illustrates such a situation. Follow Problem-Solving Strategy 7.2. Q7.5 A block is released from rest on a frictionless incline as shown. When the moving block is in contact with the spring and compressing it, what is happening to the gravitational potential energy Ugrav and the elastic potential energy Uel? A. Ugrav and Uel are both increasing. B. Ugrav and Uel are both decreasing. C. Ugrav is increasing; Uel is decreasing. D. Ugrav is decreasing; Uel is increasing. E. The answer depends on how the block’s speed is changing. © 2012 Pearson Education, Inc. Conservative and nonconservative forces • A conservative force allows conversion between kinetic and potential energy. Gravity and the spring force are conservative. • The work done between two points by any conservative force a) can be expressed in terms of a potential energy function. b) is reversible. c) is independent of the path between the two points. d) is zero if the starting and ending points are the same. • A force (such as friction) that is not conservative is called a nonconservative force, or a dissipative force. Conservative and Non-conservative • The nice thing about the conservation of mechanical energy is that the change in the potentials only are determined by the initial and final points of the path. That’s because potentials always describe conservative forces – forces where the work done by them in going from one point to another is path independent. Non- conservative forces • An example of a non-conservative force is friction. The work done by friction is definitely dependent on the path. • Let’s take the example of moving a book on a table with kinetic friction: Path 2 Path 1 • Since path 2 is longer, there will be more work done by friction. Force and potential energy in one dimension • In one dimension, a conservative force can be obtained from its potential energy function using Fx(x) = –dU(x)/dx • Figure 7.22 at the right illustrates this point for spring and gravitational forces. • Follow Example 7.13 for an electric force. Energy diagrams • An energy diagram is a graph that shows both the potential-energy function U(x) and the total mechanical energy E. • Figure 7.23 illustrates the energy diagram for a glider attached to a spring on an air track. Force and a graph of its potential-energy function • Figure 7.24 below helps relate a force to a graph of its corresponding potential-energy function. Ball launcher problem TOTAL potential energy of the ballspring system
© Copyright 2025