Geophysical Monograph Series Vol. 67 CHARACTERIZATION OF SAMPLE ENVIRONMENT IN A UNIAXIAL SPLIT-SPHERE APPARATUS Robert C. LIEBERMANN and Yanbin WANG Centerfor High PressureResearch* and Departmentof Earth and SpaceSciences, State Universityof New York, StonyBrook, N. K 11794-2100, USA Abstract. The distributionsof stressandtemperaturein solid-mediatype, high-pressureapparatusare importantparametersin characterizingthe sampleenvironmentandin the designof experimentsat highpressuresand temperatures.In a 2000-ton uniaxial split-sphereapparatus(USSA-2000), we have developed techniquesto control and monitor the pressureand temperaturedistribution,the deviatoricstressand strain,and the oxygen fugacity. Pressurecalibrationat room temperatureis a function of anvil dimensions,grade of tungstencarbide and gasket design;the pressure gradientdeterminedusingthe Bi and CaGeO3 transitionsandthe densification of amorphoussilica varies from 50 to 500 MPa/mm. At high temperature,the cell pressurecan be enhancedor diminishedrelative to room temperature;in pyrophyllite cell assemblies,relaxationprocesses causethe pressureto decreasewith run duration.Temperaturegradients are measuredby monitoringmultiple thermocouplesor applicationof pyroxene geothermometryin examinationof the run products;these gradientsare sensitiveto the capsuleandmediasurroundingthe sample andvary from 15 to 150øC/mm.The deviatoricstressat hightemperature is estimatedwith the use of syntheticMgO and natural olivine single crystalsas in situ piezometers;it is governedby the propertiesof the confiningmediasurrounding thesampleandcanbeadjustedandcontrolled from lessthan 10 MPa in NaC1 to more than 500 MPa in BN or MgO cell assemblies.Strain marker experimentsat room and high temperature demonstratethat the deformationis relatively uniform throughoutthe specimen.Soft Fe capsuleshavebeenemployedto containolivine single adapting technologiesfor the USSA-2000 is to create a "sample friendly" apparatus for physical, chemical and mechanicalexperimentsof importanceto geophysicsand geochemistry. The purposeof this paper is to describethe techniques which havebeendevelopedin our laboratoryto controland characterizethe sample environment,including pressure, temperature, deviatoricstressandstrain,andoxygenfugacity, as well as the computer-controlledsystem to adjust and monitor the heating,cooling and decompressioncycles. High PressureApparatus The USSA-2000 was designedafter a similar 5000-ton devicedevelopedby E. Ito at theInstitutefor the Studyofthe crystals andtobufferthepo2fordiffusion experiments. Thesecontrollable environmentalparametershave been utilized to design and execute a variety of high-pressure,high-temperatureexperimentsto studykinetics and mechanisms, deformation, diffusion, crystal growth, hot-pressing andphaseequilibriafor materialsof geophysicalandpetrologicalinterest. Introduction The continueddevelopmentof large-volumehigh-pressure apparatusover the past twenty-five years, most notably in Japanbutmorerecentlyalsoin othercountries,hasprovided many exciting opportunitiesand challengesfor researchin thephysicsandchemistryof Earthmaterials.Justprior to the 3rd U.S.-JapanHigh PressureSeminarin January1986, we installeda 2000-ton uniaxial split-sphereapparatus(USSA2000) in ourlaboratoryat StonyBrook(seephotoin Fig. 1). In additionto thelargesamplevolume,(50 mm3at 10GPa and3 mm3at 25 GPa),a key featureof suchapparatus is the ability to adjust,control,and characterizethe sampleenvironmentandtherebytakeadvantageof thetechniquesdeveloped at lower pressures.Our objectivein developingand *A NSF Scienceand TechnologyCenter. Figure 1. PhotoofTibor Gasparikinsertingthe MA-8 second-stage anvilsin the 2000-tonuniaxial split-sphereapparatus(USSA-2000). 19 High-PressureResearch:Application to Earth and Planetary Sciences,editedby Y. Syonoand M. H. Manghnani,pp. 19 - 31. ¸ by Terra ScientificPublishingCompany(TERRAPUB), Tokyo / AmericanGeophysicalUnion, Washington,D.C., 1992. Geophysical Monograph Series Vol. 67 UPPER GU I DEBLOCK UNIAXIAL PRESS GUIDEBLOCKS NO. 6 ANVIL NO. 4 070 SPLIT-SPHERE CUBE ILS 2000TON ClACK I [ LOWER GUIDEBLOCK Figure 2. Schematicdiagramof USSA-2000 and detailsof first-stage sphericalanvilsin guideblocks. Earth's Interior of Okayama University (Ito and Yamada, 1982; Ito et al., 1984; seealso Liebermannet al., 1985). As shownin Fig. 2, it consistsof a 2000-tonuniaxialpresswith a two-stageanvil systemcapableof generatingpressures above 20 GPa and temperaturesin excessof 2000øC. The first stageis a tool steel spheresplit into six parts, glued permanentlyinto upperand lower guideblocks,andenclosing a cubic cavity (60 mm on edge) which containsthe secondstageanvil assembly.The lower guideblockcan be removedfrom the presson a carriageto facilitate accessto the secondstageandcell assemblyduringthepreparationof an experiment.The pressis driven by a hydraulicsystemof domesticdesign;a hydraulicpressureof 180 MPa appliedto thejack (diameter= 370 mm) correspondsto an axial force of 2000 tons and generatesa pressureof 3.1 GPa on the interfacebetweenthe first and secondstageanvils (Fig. 3). I HYDRAULIC PRESSURE [KGF/CM*CH) HYDRAULI ANVIL TRUNCATED SURFACE PRESSURE AND C VS PRESSURE PRESS TONNAGE 1 MAX. 1860 , P q30 ANVIL TRUNCATED SURFACE PRESSURE 6020 I MAX. $2040 P; (KGF/CM*CM) t ooo MAX.2000 PRESS TONNAGE (TONF) Figure3. Presstonnageandpressure at surfaceof thefirst-stage anvilforUSSA-2000asa functionof hydraulicpressure appliedtojack (370 mm diameter). 20 LIEBERMANN ET AL. Geophysical Monograph Series Vol. 67 blies(Fig. 5) usingthephasetransitionsin Bi I-II (2.55 GPa), Ba I-II (5.5 GPa), Bi III-V (7.7 GPa; all from Lloyd, 1971), ZnS (15.5 GPa; Block, 1978), GaAs (18.3 GPa; Suzukiet al., 1981) and GaP (22.5 GPa; Dunn and Bundy, 1977). The calibrationsfor the 18/12, 14/7.5 and 10/5 cells were performed using Kennametal grade KZ 313 tungstencarbide cubes, while the 10/4 and 7/2 calibrations are for Toshiba W C ANVI Cl PRESSURE MEDIUM Tungaloy grade F material. The strengthof these secondstageWC anvilsplays a critical role in generatingpressures above15 GPa. We havetestedthesetwo gradesplusHertel gradeKF1 HIP (providedby the BayerischesGeoinstitutin Bayreuth,Germany): all of the anvils exhibitedsignificant plasticdeformationnearthe triangularfaceat cell pressures above 16 GPa (Fig. 6). At the GaAs transition,this deformation was mostpronouncedfor the Kennametaland least for / ' SPACER PREFORMED•• the Toshiba cubes. The pressureefficiency(ratio of cell pressureto hydraulic oil pressureon the ram) hasbeenfoundto be very sensitive to the detailsof the designof the preformedgaskets(Fig. 4). For the 7/2 cell assembly,the calibrationcurvein Fig. 5 is for pyrophyllitegasketsof squarecross-section (Type A in Fig. 7). If either the cross-sectional area of the pyrophylliteis increased(Type B) or teflon back-up gasketsare addedto reduce flow of the pyrophyllite (Type C), the pressure •---3 2mm----• efficiency is dramatically diminished.Consequently,the Figure4. Secondstageof theUSSA-2000 with theassemblyof eighttungsten Type A gasketandthe Toshibacubeshavebeenadoptedfor experimentsof MgSiO3-perovskite(seeWang carbidecubicanvilsof truncationedgelength(a) whichcompress an octahe- the synthesis dral pressuremedium(modifiedafter Sawamoto,1986). et al., 1990). We havetwo experimentswhich bearon the questionsof The second stage is assembledoutside the press and the pressuredistributionwithin the cell assemblyat room consistsof eight tungstencarbidecubesseparatedby pre- temperature.As part of a neutrondiffraction study in irreformed gaskets and spacers.Each cube has one comer versiblydensiftedfusedsilica (Susmanet al., 1990), we intruncatedinto a triangularface; the eight truncationscreate serteda specimenrod directlyintothe 10/5 cell assemblyand an octahedralcavity in which the pressuremediumis com- compressedit to a hydraulicpressureof 500 barsat 25øC for pressed(Fig. 4). The cell assemblyis an octahedronmadeof a periodof 2 hr; this shouldcorrespondto a cell pressureof pyrophyllite or semi-sinteredMgO. The secondstage is 18 GPa accordingto Fig. 5. Upon recovery from the high electricallyinsulatedfrom the first stageby phenolicsheets. pressureapparatus, thefusedsilicaspecimens (nowassuming Electricalinsulationbetweenthe adjacentcubesis provided an hour-glassshapedue to extrusionof the octahedralcell) by teflon tape. werefoundto becrackedby microfracturebutstill intact(Fig. Cell assembliesusedin the USSA-2000 are identifiedby 8). A sectionthroughthe specimenwasprobedwith a laser a pair of numbersseparatedby a slashwherethe firstnumber beam, and the pressureprofile was estimated from the representsthe edgelengthof the ceramicoctahedronandthe Brillouin frequencyshiftsby M. Grimsditch(see Susmanet secondnumberis the truncationedge length (TEL) on the al., 1990). Figure 8 demonstratesthe "negativeanvil" effect comerofthe tungstencarbidecubes.For example,an assem- in that the pressureat the anvil face is 2 GPa higherthan at bly whichutilizes an octahedronof edgelength 18 mm with the center of the cell. There is little or no radial pressure cubestruncatedto 12 mm is designatedas the 18/12 cell gradient,however. These observationsand the fact that the assembly,18/12, 14/7.5, 10/5, 10/4, 7/2 are different types densificationprocesswas time-dependent,are most likely currentlyin use in our laboratory. the result of relaxationprocessesin the compressedsilica specimenas reportedearlier by Meade and Jeanloz(1987, Pressure Calibration and Distribution 1988). Of more direct relevanceto the actual conditionsin most of our USSA-2000 experiments,the pressuregradient The cell pressureversusram load relationshiphas been at roomtemperaturealongthe lengthof the samplefrom the calibratedat room temperaturefor eachof thesecell assem- midpoint of the furnaceto the cold end hasbeen determined LIEBERMANN ET AL. 21 Geophysical Monograph Series Vol. 67 FORCE (tons) 25 I00 200 I I 300 400 I 500 I 600 I 700 I I GaP 2O _ GaAs ZnS • 7/2 •'""'••• X • USSA-2000 STONY BROOK -x--•- ••' ..... 10/5 14/7.5 © MgO Bi•_½ o Pyrophyllite Ba i I00 200 300 400 500 600 700 800 GAUGE PRESSURE (bar) Figure5. Cell pressure vs.hydraulicoil pressure for variouscell assemblies at roomtemperature. Data for the7/2 and 10/4assemblies arefor ToshibagradeF carbidecubeswhilethosefor the 10/5, 14/7.5and18/12assemblies arefor Kennametal gradeKZ 313 cubes. the cell pressureto be eitherincreasedor decreasedfrom the value based on the room temperaturecalibration.Phase transformations to a more densephaseor dehydrationin the _•, 0 solidmedia in the hot zone of the samplechambercausea TungstenCc•rbid½ generaldecreaseof the pressure.The cell pressurewill also decreasedue to compactionand sinteringof the pressure mediumandcell partsduringcompression at hightemperature.Anotherfactorwhichtendsto decrease thecellpressure is the decreasein the shearstrengthof Figure6. Typicalplasticdeformationobservedin thetungstencarbidecubes. at high temperatures the pressuretransmittingmedium. The heatingof the cell For the 7/2 assemblyand Type C gaskets(Fig. 7, the amplitudes of the deformationafter achievingthe GaAs transitionhas been measuredfor the tends to act in the oppositedirection by increasingthe KennametalKZ 313 (150 micron),HertelKF 1HIP (100 micron)andToshiba volumeofthehighpressure chamberduetothermalexpansion F (75 micron)grades. andcompensates (partiallyor completely)the effectscausing a decreasein the cell pressure. to be 0.04 GPa/mmin experiments usingthetransitionsin Bi The actualcell pressuresgeneratedat high temperature in a 18/12pyrophyllitecellassembly(Remsbergetal., 1988). will be the resultantof thesecompetingfactorsunder the Pressuregradientsat hightemperaturearelikely to be lower prevailingconditionsof temperatureand pressureand are andarecertainlylessthan0.1 GPa/mmin the 18/12assembly dependent upontheinherentphysical,chemical,thermaland based on reversalsof the garnet-perovskitetransitionin mechanicalpropertiesof the materialof the cell assembly. CaGeO3(Susakiet al., 1985) by Wang (1991). Consequently, it is difficultto predictin advancewhetherthe Variouscompetingfactorsat hightemperatures will cause pressuresat high temperaturewill be higher or lower than • Anv• 0i•nn•r 22 LIEBERMANN ET AL. Geophysical Monograph Series 0 • ......... 7-2 Vol. 67 • ......... t ......... • ......... Assembly, Rm T Toshiba F-grade 25 ! ......... I ......... 80 • 70 Carbides x CaGe03 ½ 6o GaP l/2hour •"'"• . .]'• 2hou• TTT-'• • 5o •;20 • 4o J •15 J 50 o 20 0 MgO / • I00 2(•0 500 400 LOAD ................... 0 , 100 ................... 200 , ......... 300 400 Oil Pressure, , ......... 500 5O0 x 600 700 Uons) , 600 "700 bar Figure 7. Roomtemperaturepressurecalibrationfor the 7/2 systemusing ToshibaF-gradecubes.Threedifferentgasketsystems(A, B, andC) were testedwith the followingcross-sectional dimensions: Type A 2.4 x 2.4 mm pyrophyllite Type B 2.5 x 3.2 mm pyrophyllite Type C 2.4 x 3.2 mm pyrophyllite and 2.4 x 3.2 mm teflon back-ups. Figure9. Pressure calibrationof 18/12cellassembly atroomtemperature and hightemperature. Datafor pyrophyllitecellssuggests thatcellpressure drops as a function of time due to flow and relaxation of materials within the cell. No suchtime-dependent behavioris observedfor theMgO cells(seealsoLu, 1990). pyrophylliteoctahedronis replacedby semi-sintered MgO, thepressureefficiencydecreases butthecell pressureathigh temperatureis no longera functionof run duration(Fig. 9). TemperatureCalibrationandDistribution Temperatures in the sampleare generatedvia cylindrical furnacesof graphite,lanthanumchromite,or metalsinserted in the octahedralcell (e.g. Fig. 10) and measuredwith W3%Re/W25%Re thermocouples andcontrolledautomatically. No correctionfor the effectof pressureon the thermocouple emfisapplied;althoughsuchW-Re thermocouples are less ductile than those fabricated from Pt-Rh and thus 4mm I Figure8. Schematic cross-section of recoveredsilicasamplecompressed to 500 barsoil pressureat 25øC in a 10 mm MgO sampleassembly.Brillouin frequencyshiftsat pointsmarked 1 to 7 are usedto estimatethe pressure distributionin the sample.Points1-4 are at 14 GPa, while points5-7 are at 16 GPa (datacourtesyof M. Grimsditch;seealsoSusmanet al., 1990). moreproneto breaking,theeffectof pressure ontheiremfis generallythoughtto be lesspronounced(e.g. Gettingand Kennedy, 1970; Ohtani et al., 1982). The temperaturedistributionin the samplemay be adjustedby modifyingthe cell designaccordingto the objectives of the experiments:for example, to producehigh temperaturegradientsfor crystal growth or to capture a univariantphaseboundaryor low temperaturegradientsto synthesizelarge specimensof singlephaseand homogeneous texture. For the 10/5 cell assembly(Fig. 10), Gasparik(1989) has estimatedthe temperaturedistributionin the encapsulated thoseat room temperature.In the 10/4 assembly,Gasparik sampleusingthemethodof Takahashiet al. (1982) basedon (1989) observedthat the cell pressureswere 2 GPa lower at thesolubilityofenstatitein thediopsidicpyroxenecoexisting 1400øC than at 25øC. By contrast, Gwanmesia and with the enstatiticpyroxene.Figure 11 is a plot of the Liebermann(this volume) have found a 2.5 GPa pressure isothermsinferred from the enstatite-diopsideexperiment enhancement at 1000øCin the 14/7.5 assemblycomparedto andshowsthatthe axial gradientis ~ 150øC/mm.By replacthe room temperaturevalue. In the 18/12 pyrophyllitecell ing the molybdenumcapsulewith rhenium,Presnalland assembly,thereis an enhancement of 1 GPa for runsof 0.5 Gasparik(1990) have been able to performruns of 2 hr up to 2400øCfor pressures of 16.5 hr duration,butonly0.5 GPafor runswhichlast2 hr or longer durationat temperatures (seeFig. 9 from Lu, 1990;RemsbergandLiebermann,1991) GPawith no observedcontaminationof the sampleandwith dueto flow andrelaxationin thepressuremedium.When the stabletemperaturecontrol. LIEBERMANN ET AL. 23 Geophysical Monograph Series CELL-ASSEMBLY Vol. 67 FOR 1OMM OCTAHEDRON :,','":• Magnesium Oxide I LanthanumChromite • Zirconia :• Molybdenum "• ß Sample • •-• AluminaCeramic Thermocouple Wire Figure10. Cellassembly fordetermining thetemperature distribution using theenstatite content ofdiopsidic pyroxene coexisting withenstatitic pyroxene (fromGasparik, 1989;--rhenium replaces molybdenum asthecapsule inthe highertemperature experiments of Presnall andGasparik, 1990). lOOKBARTHERMOCOUPLE Tc 0 øC HOT SPOT <ASSEMBLY Pyrophyllite CrushableAlumina Graphite PlatinumCapsule MagnesiumOxide Sample Alumina Ceramic Zirconia Steel Thermocouple Wire Figure12. 18/12mmpyrophyllite cellassemblies withradial(a)andaxial(b) thermocouple configurations (seealsoRemsberg andLiebermann, 1991). CENTER -30oC <SAMPLE -50øC ...- • CENTER _70oC Tc -ioooc -15ooc -2oooc 14OOøC 16OOøC 17OOøC 1MM Figure11. Cross-section of an experimental chargein a 10mmMgO cell assemblyshowingthe isotherms inferredfrom the enstatite-diopside data whicharein Fig. 3 of Gasparik(1989). 24 LIEBERMANN ET AL. Recently,KawashimaandYagi (1988;seealsoKawashima etal., 1990)havedemonstrated thathomogeneous temperaturedistributions canbeachieved withincylindricalfurnaces by selectingproperresistivitiesfor the furnacetubeandend caps.Gwanmesiaand Liebermann(this volume)have employedthisconceptin their 14/7.5cellassembly by usinga telescopic graphitefurnaceandtantalumendcaps.Measurementsof thetemperatures atthecenterandendof thesample withtwo axialthermacouples indicatethatthetemperature gradientis lessthan 15øC/mmoverthe 3 mm lengthof the sample.For the 18/12 cell assembly,we have usedboth radialandaxialthermocouple configurations (Fig. 12). Althoughthe radial thermocoupleis easierto fabricate,it has severaldisadvantages (seealsodiscussion in Herzbergetal., 1990): (1) a hole mustbe drilled in the heaterwhich creates localirregularities in resitivityandtemperature; (2) chemical Geophysical Monograph Series Vol. 67 reactionor contactof thethermocouplewireswith the heater leads to ambiguitiesin the actual location of the nominal temperaturemeasurement;and (3) the thermocouplereferencejunction is at the triangularface of the carbideanvils, thusnecessitatinga secondmeasurementof anvil temperaturefor correction.For thosereasons,theaxial thermocouple configurationhasbecomethe designof choicein our laboratory. Deviatoric Stress and Strain All large-volume,high-pressureapparatustransmitpressure to the specimenvia solid media (e.g., boron nitride, pyrophyllite,magnesiumoxide,alkalihalides)whichexhibit a finite shearstrengthandthusimposea non-hydrostaticor deviatoric stresson the confined specimen.Although this topic has been the subjectof considerableinterestin the petrologyandmineralphysicscommunities,we haveonly a qualitativeunderstanding of thisdeviatoricstress:e.g.,pyrophyllite is lesshydrostaticthan sodiumchloride;opposed anvil devices are less hydrostaticthan piston-cylinderor multi-anvil devices(seealsoKaratoand Ogawa, 1982). Triaxial deformationexperimentsin other laboratories •mm ::::• '•' Pyrophyl lite 1 Graphite [•'• MgO • Sample• Capsule Figure14. 18/12cellassemblyfor deformationexperiments usingtheUSSA2000. have shownthat the densityof free dislocationsinducedin olivine during steady-statecreep at high temperatureis proportionalto thesquareof theapplieddeviatoricstress( or3)as shownin Fig. 13 (seeKohlstedtand Weathers,1980 for a review). This relationshipprovidesa directway to infer IO0 _ _ OLIVINE (after Kohlstedt etal., 1976 a) cz= 3/,/ _ q-(r•: cz/Jbp '/e - •• • •"'""•'•1 Pyrophyllite+MgO- - ""i"i'iOOl] B Nc I _1 •' • USSA-2000(18mm) T 106 _ m:l Girdle-Anvil Apparatus INaCI/ff_--•..... 0.1 _ 107 10 8 10 9 DISLOCATION DENSITY (p),cm I0I0 I0 _2 Figure13. Deviatoricstress (rrl-rr3)asa functionof densityof freedislocations for olivinesinglecrystals. Thesolidlinerepresents the fitof(Crl-Cr3) = apbp 1/2,(where a isanempirical constant, pthemean shear modulus, andbisthemagnitude oftheBurgers vector of themobiledislocations tothedatain solidandopencircles,Kohlstedtetal., 1976).Thedottedarearepresents therangeof thedeviatoric stress inferredfromtheobserved dislocation densities frompiezometer runs([ 101]C orientation in pyrophyllite + MgO cell)in USSA2000. The shadedareasrepresent rangesof the deviatoricstresses ([ 101]C orientation in NaC1andBN cellsandalsofor the [001] orientationin theBN cell in the girdle-anvilapparatus fromWang et al. (1988). LIEBERMANN ET AL. 25 Geophysical Monograph Series Vol. 67 OOl o oo -o Ol • -o02 • -oo3 • -o04 -0 05 -0.06 -0.5 Figure15. Photomicrographs showingcontrastof dislocationdensityin the olivine piezometerbefore (A) and after (B) deformationin 18/12 cell assembly(Fig. 15). 0.0 0.5 1.0 1.5 2.0 2.5 Figure18. Verticaldisplacement of theMgO grains(DeltaY) versusvertical positions Y in thetwo-phasespecimen afterdeformedat 8.5 GPaand1000øC, for 1 hr. The linearfit givesan averageverticalstrain(the slopeof the fit) of 2%, with R = 0.94. ({x•-{x3)in large-volume,high-pressureapparatus. Ingrin and Liebermann(1989) have demonstratedthe feasibility of this approachin a pilot study using single crystalsof SanCarlosolivine and syntheticMgO as in situ piezometers to monitorthedeviatoricstressin a girdle-anvil typeapparatus. By adjusting thedesignof thecellassemblies surroundingthe specimenat high temperature,(rr•-rr3)was varied from 1 to 10 percentof the confiningpressureof 4 GPa. Figure 16. Deformationpatternin the 18/12 cell assembly(Fig. 15) at room temperature(A) before,(B) after deformationat 8 GPa. Wang et al. (1988) conducteda more extensiveseriesof experimentsusingnatural olivine singlecrystalsas in situ piezometersandwereableto showconclusivelythatmostof the dislocationsare producedat peak temperatureandpressureandthatthe dislocationdensityis relatively independent of P-T paths.Experimentsat maximumpressureP- 4 GPa and temperatureT = 1050øC for t = 1 hr in NaC1 cell assembliesand various P-T paths yield specimenswhose dislocationdensitiesareunchangedfrom the initial value of 2 x 106cm-2, implyingthatthedeviatoricstress waslessthan 14MPa (seeFig. 13).In BN cell•ssemblies, therecovered specimenfrom high P-T experimentsexhibitmuchhigher densitiesof dislocations (•109 cm-2) whichhavebeenproducedby steady-state plastic deformationof the olivine crystalsundera deviatoricstressof•300 MPa. Thisvalueof Figure 17. Back-scattered SEM micrographof deformationpatternin a polycrystallinespecimenat high temperature.SpecimencontainsCaGeO3 perovskite(gray background)andMgO (dark grains).(A) before,(B) after deformation 26 at 8.5 GPa and 1000øC for 1 hr. LIEBERMANN ET AL. deviatoricstressin BN has been corroboratedby observations of the subgrainsize and recrystallizedgrain size in specimens of longerrun duration(3 hr). Thistechnique hasbeenextended tohigherpressures in the USSA-2000 using a 18/12 cell assemblycontainingtwo samplechambers (Fig. 14), onefor a specimenandonefor the in situ olivinepiezometer.For the cell assemblyin Fig. 14 in which singlecrystalMgO is the specimenin the lower chamber,dislocationdensitiesof 2-4 x 109/cm 2 havebeen observedwhich implies that the deviatoricstressis about 400-500 MPa (Fig. 13). The opticalphotomicrographs in Geophysical Monograph Series Fig. 15 show the dislocationdensityin olivine recovered afterloadingto 8.5 GPawithoutheating(A) andafterheating and deforming for 1 hr at 1000øC and 8.5 GPa (B) with polycrystallineCaGeO3-perovskite in the lower chamber. The microstructureof the samplerecoveredfrom the zerohour run representsthe effectsof loadingandunloadingat roomtemperature.The characteristic featureof this sample is the microcracks normal to the vertical direction which are undoubtedlydueto unloadingunderthestressconditionwith 1 beingvertical.Freedislocation densityis about2 x 107 cm-2, a typicalvalueforthestartingmaterial.Forthesample deformedat 1000øCfor 1 hr, however,dislocationdensityis at leastoneorderof magnitudehigher,andthe distributionof the dislocationsis ratherhomogeneous. TEM studysupports this observation,and gives a dislocationdensity3 (+0.5) x 108 cm -2. Two typesof experimentsusingstrainmarkertechniques havebeenperformedin orderto understand the deformation processin the cell assembly(see alsoWang, 1991). In the first, a singlecrystalof MgO ([ 100] vertical orientation)is placedin thelowerhalfofthe assembly.The entireassembly was cut alongthe samecross-section shownin Fig. 15, and 22 TEM coppergridsweremountedonthe surface(Fig. 16). The oppositesurfacewascoveredby teflontape,andthetwo halves of the assemblywere then brought togetherand compressed to 8 GPa at room temperaturefor 30 min and decompressed. By comparinginitialandfinal configurations, a flow patternin the cell assemblycanbe obtained.Thereis a discontinuityacrosstheinterfacebetweenthepyrophyllite pressuremediumandthe MgO sleeve,within which deformation is relatively uniform. The MgO single crystalhas experiencedconsiderable,but rather uniform, axial compressionand radial expansion,whereasthe strain in San Carlos olivine specimenis negligible. The flow pattern revealedby Fig. 16 illustratesthe mechanismof generating deviatoricstressin the cell assembly.The strengthsof the specimenand piezometerare muchhigherthan that of the surrounding pyrophyllite.During compression, pyrophyllite Vol. 67 in Fig. 17a. The two half cylinderswere then put together with a 24-[tm-thick Pt foil in betweenand deformedat 8.5 GPa and 1000øCfor 1.5 hr. On recovery,a 2.6% shortening was obtainedby lengthmeasurement.The samesurfacewas examinedagainusing SEM (Fig. 17b). Horizontal and vertical positions(x' andy') of the centerof each MgO grain were obtainedusingthe samecoordinatesystem,and horizontalandverticaldisplacements (dx-- x-x ' anddy =y-y ') were obtained.Figure 18 showsthe vertical displacement (dy) vs verticalposition(y) for morethan60 MgO grains.A least squaresfit gives a slope of 2%, which is the axial compressional strainof the specimen.This value is in good agreementwith the length changemeasurement.A similar plotwasobtainedfor dxvsx and,althoughthe scatteringwas greater,a-0.6% (tensile) strainwas obtained.Thus, deformation is relatively uniform throughoutthe specimen,and themaximumcompressional principalstrainisapproximately vertical. The distributionof the datapointsin Fig. 18 shows that althougha temperaturegradientexistsin the cell assembly, its effect on macroscopicstrain distributionis negligible. The developmentof the in situ stresstechniquealongwith various methodsof measuringthe strain undergoneby a sampleunder high pressureand temperature(see Wang, 1991) offers the opportunityfor performingqualitativedeformationexperimentsthroughoutthe entire range of P-T conditionsfor the uppermantle. OxygenFugacity As part of an interlaboratoryproject to measureFe-Mg interdiffusionin natural single crystalsof olivine at high pressuresand temperatures,we have developedtechniques to control the chemical and mechanical environment of the sample.This work was conductedin collaborationwith the laboratory of Olivier Jaoul in Orsay, France; additional detailsmay be found in Bertran-Alvarezet al. (1991). Singlecrystalsof natural San Carlosolivine were cut into extrudes, and the total volume of the cell is reduced. The 2 mm thick sliceswith the [010] crystallographicaxisnormal corresponding decreasein linear dimensionin the vertical to the cuttingplane.Severalcylindersof 2.2 mm in diameter direction is partly accomplishedby length changein the were cored from each slice (Fig. 19a), after which their specimenandthe piezometer.Deformationin the specimen lengthis shortenedto 1.5 mm to eliminatechippedfacesand is characterizedby a verticalcompression and a horizontal providethebestresistanceagainstfracturing.One endisthen expansion,whicharepresumablycausedby a nearlyvertical polished with 0.3 btm alumina powder. The cold-worked maximum compressional principalstress. layer resulting from the polishing is finally etchedfor 15 The secondtypeof strainmarkerexperimentwasdesigned secondswith dilutehydrofluoricacidandcarefullycleaned. for hightemperatures. A hot-pressed specimencontainingan A thin layer (450 A) of fayalite (Fe2SiO4)was depositedon equi-molarmixture of CaGeO3perovskiteand MgO (the the polishedendby RF sputtering.With this configuration, thermodynamically stablephaseassemblage above8 GPa) a Fe-Mg interdiffusioncoupleisformedwith thethinfayalite wascutalongitscylindricalaxis,andoneof thesurfaces was layer as the iron reservoir,and the olivine a quasi-infinite, examinedusingscanningelectronmicroscopy(SEM). HoriMg-rich medium(comparedto the fayalitelayer). zontal and vertical positions(x andy) of the centerof each For the diffusion experiments,two cylindrical crystals MgO grainwere determinedin the coordinatesystemshown prepared in the above fashion are placed together as a LIEBERMANN ET AL. 27 Geophysical Monograph Series Vol. 67 andcompressibilitiesareanisotropicandthisdiffer from one crystalto the other,sothattherisk of theirweldingduringthe experimentis reduced. This couple is fitted into a soft iron capsule(Fig. 19c) which sealsduring pressureand temperatureincrease.The capsuleis insertedin a graphitefurnace surroundedby a semi-sinteredMgO sleeve(30% porosity)which minimized deviatoricstressandisolatedthe specimenchemicallyfrom the furnace.That entirecylindricalassemblyis insertedinto an 18 mm octahedralpyrophyllitecell assembly(Fig. 19d). The iron capsuleis placedin the centerof the cell assembly a) • so that the zone in which fayahte layer diffusion occurs is situated in a minimal thermal gradient. The use of Fe capsuleshasbeen a major improvementin the quality of theseexperiments.The iron capsuleexhibits threevaluablecharacteristics. Firstly,it sealsin thebeginning of the experiment and therefore chemically isolatesthe diffusion couple from other parts of the cell assembly. Secondly,the ductile behaviorof Fe helps to preservethe mechanicalintegrity of the single crystalsduring the experiment;this capsuleis very efficient in protectingolivine fromtherelativelylargedeviatoricstressin thiscell assembly. 1 mm Thirdly,theassociation of olivineandironmaintains thepo2 •iron I graphite •] olivine 1 mm (d) thermocouple at a knownvaluewhich dependson •, a parameterdescribing the cationicdeparturefrom stoichiometryin olivine. In that case,Po2is fixedby 3 independent parameters: theactivities of the two solid phases,namely iron and olivine, and the additionalparameter• (Nakamura and Schmalzreid,1983; Jaoulet al., 1987). For our experimentsat 7 GPa and900øC, thisresults inafixedpo 2at10-14'0+0'2 bar(Bertran-Alvarez et al., 1991). The experimentsto datehavebeenperformedat temperaturesof 900øC,anda pressureof 7 GPa. In theseruns,theP- Tpathshavebeenidenticalto ensurea goodreproducibility Figure 19. Specimenconfigurationfor high-pressure, high-temperature (a) P is increasedat an average diffusionexperiments:(a) olivine singlecrystalwith thin film of fayalite of the diffusionexperiments: rate of 0.1 GPa/min to the maximumP at room T; (b) T is sputtered ononeend;(b) specimensandwichof two olivinecrystalswith their [a] axescrossedwith an angleof•90 øandtheirfayalitelayersin themiddle increasedat 15øC/minto 900øC; (c) P and T are maintained of thesandwich;(c) thespecimensandwichinsertedintoanironcapsulewith constantfor 6 hours; (d) T is decreasedslowly to room capsat eachend;(d) cross-sectionof theoctahedral18 mm cell assemblyfor temperatureover 4 hours;and (e) P is releasedvery slowly theUSSA-2000 apparatus. Thejunctionof thethermocouple wires(W3%Re to atmosphericpressureovera periodof 10 to 15 hours.The andW25%Re) is situatedalongthecircumference of theironcapsulenearits heating, cooling, heating and decompressionrates were midpoint. monitoredby a computer-controlledsystemdescribedbelow. Suchprolongedcoolingand decompression pathsare essentialto protect the crystalsfrom thermal shock and sandwichwith the iron silicate layer between two semi- stresseswhich might generatecracks,and thus hamperthe infinite media of olivine (Fig. 19b). The sandwicharrange- diffusionprofile analysis. A specialprocedurewas developedto retrieve the speciment helps to prevent iron loss from the fayalite layer; in otherwordsFe is only ableto move from fayalite to olivine, mens after the high P-T experimentsand to preservethe thusestablishinggoodboundaryconditionsfor the interdif- interface between the crystals (Fig. 20). When the cell fusion problem. When put together, the two crystals are assemblyis recoveredfrom the apparatus,the innermost orientedwith their [a] axescrossedat an angleof-• 90ø.Such MgO sleeveis firmly bondedto the Fe capsule.To openthe a dispositionfacilitatesthepreservationandrecoveryof the capsule,a groove is cut aroundthe circumferenceof this diffusion interfacebecausethe linear thermal expansivities sleeveat the midpointof the capsule.The capsuleandsleeve 28 LIEBERMANN ET AL. Geophysical Monograph Series Vol. 67 ussA2000 •. , •} ! 0 2 4 6 8 10 12 14 Figure20. Retrievalof samples(a) aftercuttinga groovein theMgO sleeve (b) theironcapsuleis chemicallydissolved(c) to enablethecrystalspecimen to be easilyseparated (d) seetext for details. Figure22. Hydraulicpressure onjack for USSA-2000asfunctionoftime for the decompression cycle after a high-pressureexperiment;compareautomaticcontrolvia computerwith manualoperationof pressurereleasevalve. tered,exceptfor somechippingof the specimenat the edges. Further examinationof the recoveredspecimensby transmission electron microscopy verified that there was no chemical reaction at the contact between the olivine and the Fe capsule,and revealedno substantialincreaseof dislocationdensitynearbythediffusioninterface(whichis supporting evidence for the relatively low deviatoric stressin these experiments). The ability to controltheP and Tcycles in the USSA-2000 is critical to the successof these diffusion experimentsin single crystalsas well as in the fabrication of fully-dense Figure 21. Optical photomicrograph of recoveredsampleshowingthe polycrystals for acousticstudies(asdescribedby Gwanmesia excellentmechanicalandchemicalconditionof thespecimen with onlya few and Liebermann, this volume). Computer control of the cracksparalleltothediffusioninterface(toppicture).Thenumberof fractures heating and cooling path is common now in many highoccurring perpendicular to theinterfaceis in generalmuchtoolow to allow fasterdiffusionprocesses thanlatticediffusion.The remainingpartof theFe pressurelaboratories,but this is less true for the pressure capsuleis seenon therightsideof thecrystal(in black). path. By combininga needle-typebleed valve with a servocontrolled direct current motor, our electronicsengineer BenedictVitale has designedand constructeda computerare then placed in a nitric-sulfuric acid solution which basedsystemtomonitorandcontroltherateof decompression. smoothly dissolvesthe Fe capsuleat the groove and allows us to With thissystem,it is nowpossibleto depressurize separate thetwo partsof thespecimenexactlyatthediffusion overextendedperiodsof time (up to 50 hr) andtherebyavoid interfaceswhich are then availablefor the RBS analysis. the irregular,and sometimestoo rapid, decreaseof pressure The carefulexperimentalproceduresdescribedaboveen- observedwhen the hydraulicsystemis controlledmanually abledus to retrieve sampleswhich are almostunfractured (Fig. 22). Not only hasthisenabledusto recoverintactsingle (Fig. 21). There are, however, somecracksparallel to the crystalandpolycrystallinespecimens,but it hassignificantly diffusioninterface(top of the picture),originatingfrom the reducedthelikelihoodofblowoutsofthegasketsandextended decompression cycle;sincethe cracksareproducedafterthe thelifetimesof thetungstencarbidecubesin thesecondstage of the USSA-2000. annealingperiod,they do not affectthe diffusionprocess.A careful examinationof the physical stateof the specimen surfaceusing an optical microscopeat variousmagnifica- Acknowledgments.The StonyBrook High PressureLaborationsrevealedthat the surfacewas almostcompletelyunal- tory was establishedin 1984 by R. C. Liebermann,C. T. LIEBERMANN ET AL. 29 Geophysical Monograph Series Vol. 67 Prewitt and D. J. Weidner with the joint supportof the National Science Foundation Division of Earth Sciences and Akimoto and M. H. Manghnani,pp 405-419, AcademicPublications, Tokyo, 1982. Ito, E., E. Takahashi,andY. Matsui, The mineralogyandchemistryof the lower mantle:An implicationof ultrahigh-pressure phaserelationsin thesystemMgO-FeO-SiO2,EarthPlanet.Sci.Lett., 67,238-248,1984. Jaoul,O., B. Houlier,M. Cheraghmakani,R. Pichon,andR. C. Liebermann, Surfacedestabilizationand laboratoryinducednon-stoichiometry in San Carlos olivine, Phys. Chem.Minerals, 15, 41-43, 1987. Karato,S. andM. Ogawa,High-pressurerecoverof olivine:Implications for creepmechanisms andcreepactivationvolume,Phys.Earth Planet. the State University of New York at Stony Brook. In this endeavor,we benefittedgreatly from the advice,help and encouragement of manyof ourJapanese colleagues, including S. Akimoto, O. Fukunaga,E. Ito, H. Kanda, M. Kato, M. Kumazawa, E. Ohtani, H. Sawamoto, E. Takahashi, M. Wakatsuki,H. Watanabeand T. Yagi. We are particularly grateful to Tibor Gasparik for his Inter., 28, 102-117, 1982. leadingrole in developingtechniquesfor experimentsusing Kawashima,Y. and Y. Yagi, Temperaturedistributionin a cylindrical furnacefor high-pressure use,Rev. Sci. Instrum., 59, (7), 1186-1188, the USSA-2000. We thank him and our other colleagues 1988. Yves Bertran-Alvarez,FrancoisGuyot,GabrielGwanmesia, Kawashima,Y., T. Tsuchida,W. Utsumi, and T. Yagi, A cylindrical MasamiKanzaki,JaidongKo, RenLu, RosemaryPacaloand furnacewith homogeneous temperaturedistributionfor use in a cubic Anne Remsberg for many discussionsand permissionto high-pressurepress,Rev. Sci. Instrum., 61,830-833, 1990. refer to their work. We have also profited from the contri- Kohlstedt,D. L. andM. S. Weathers,Deformation inducedmicrostructures, paleopiezometers, anddifferentialstressesin deeplyerodedfaultzones, butions of visiting scientistsC. T. Herzberg and D.C. J. Geophys.Res., 85, 6269-6285, 1980. Presnall to our laboratory.We thank Tibor Gasparikand Kohlstedt,D. L., C. Goetze,andW. B. Durham,Experimentaldeformation reviewer A. Navrotsky for constructivecommentson this of singlecrystalolivine with applicationof flow in the mantle, in The paper.The designandconstruction of the hydraulicsystem Physicsand Chemistryof Minerals andRocks,editedby R. G. J. Strens, anditslaterautomationwouldnothavebeenpossiblewithout pp. 35-49, JohnWiley, New York, 1976. the skill and dedication of A. Catalano and B. Vitale. The High PressureLaboratoryis currentlysupportedby NSF grant89-17563 from the Instrumentation andFacilities Program.This laboratoryis now part of thenewNSF Center for High PressureResearch(EAR 89-20239) establishedat StonyBrook in conjunctionwith PrincetonUniversity and the GeophysicalLaboratoryof the CarnegieInstitutionof Washington.The researchreported in this paper is also supportedby an NSF grant EAR 89-17097. REFERENCES Bertran-Alvarez,Y., O. Jaoul, and R. C. Liebermann,Fe-Mg interdiffusion in single crystal olivines at very high pressureand controlled oxygenfugacity:technologicaladvancesandinitial dataat 7 GPa,Phys. Earth Planet. Interiors, submitted, March, 1991. Block, S., Round-robinstudyof the phasetransformationin ZnS, Acta. Cryst., A34, Suppl 316, 1978. Dunn, K. J. and F. P. Bundy, Materials and techniquesfor pressure calibrationby resistance-jumptransitionsup to 500 kilobars,Rev. Sci. Instrum., 49, 365-370, 1977. Gasparik,T., Transformationof enstatite-diopside-jadeite pyroxenesto garnet, Contrib Mineral Petrol., 102, 389-405, 1989. Getting,I. C. andG. C. Kennedy,Effect of pressureontheemfofchromelalumel and platinum-platinum10% rhodium thermocouples,or. Appl. Phys., 41, 4552-4562, 1970. Gwanmesia, G. D. and R. C. Liebermann, Polycrystals of Highpressurephases of mantleminerals:Hot-pressingandcharacterizationo physicalproperties,this volume. Herzberg,C., T. Gasparik,andH. Sawamoto,Origin of mantleperidotite: Constraintsfrommeltingexperimentsto 15GPa,orGR,95,15779-15803, 1990. Ingrin, J. and R. C. Liebermann,Deviatoric stressin a girdle-anviltype highpressureapparatus:effect onthe quartz-coesite phasetransformation, Phys. Earth Planet. Int., 54, 378-385, 1989. Ito, E. andH. Yamada, Stability relationsof silicatespinels,ilmenitesand perovskites,in High-PressureResearch in Geophysics,edited by S. 30 LIEBERMANN ET AL. Liebermann,R. C., C. T. Prewitt, andD. J. Weidner,Large-volumehighpressuremineralphysicsin Japan,EOS, 66, 138-139, 1985. Lloyd, E. C., AccurateCharacterizationof theHigh PressureEnvironment, NBS Spec.Publi. No. 326, Washington,D.C., pp. 1-3, 1971. Lu, R., Study of kinetic rates of transformationbetween garnet and perovskitephasesof CaGeO3, M. S. Thesis,StateUniversityof New York at Stony Brook, 1990. Meade,C. andR. Jeanloz,Frequencydependentequationof stateof fused silica to 10 GPa, Phys. Rev. B, 35, 236-242, 1987. Meade,C. andR. Jeanloz,Effect of coordinationchangein the strengthof amorphousSiO2, Science,241, 1072-1074, 1988. Nakamura,A. and H. Schmalzried,On the nonstoichiometryand point defect in olivine, Phys. Chem.Miner., 10, 27-37, 1983. Ohtani, E., M. Kuzamawa,T. Kato, and T. Irifune, Melting of various silicates at elevated pressures,in High Pressure Research in Geophysics,editedby S. Akimoto andM. Manghnani,pp. 259-270, Center for Academic Publishing,Tokyo; D. Riedel PublishingCo., Boston, 1982. Presnall,D.C. andT. Gasparik,Melting ofenstatitefrom 10 to 16.5 GPa, the beta phase-majoriteeutecticat 16.5 GPa, and implicationsfor the origin of the mantle, JGR, 95, 15771-15777, 1990. Remsberg,A. R. and R. C. Liebermann,A study of the polymorphic transformations in Co2SiO4,Phys. Chem.Minerals, in press,1991. Sawamoto,H., Single crystal growth of the modified spinel (beta) and spinel(gamma)phasesof (Mg, Fe)2 SiO4 and somegeophysicalimplications,Phys. Chem.Minerals, 13, 1-10, 1986. Susaki,J., M. Akaogi, S. Akimoto, and O. Shimomura,Garnet-perovskite transformationin CaGeO3: In situ x-ray measurements using synchrotronradiation, Geophys.Res. Lett., 12, 729-723, 1985. Susman, S., K. J. Volin, R. C. Liebermann, G. D. Gwanmesia, and Y. Wang, Structuralchangesin irreversiblydensiftedfusedsilica:implicationsfor the chemicalresistanceof high level nuclearwasteglasses, Phys. Chem. Glasses,31, 144-150, 1990. Suzuki, T., T. Yagi, and S. Akimoto, Precisedeterminationof transition pressureof GaAs. Abstr. 22nd High PressureConf. Jpn.8-9, 1981. Takahashi,E., H. Yamada,andE. Ito, Ultra-highpressurefurnaceassembly to 100 kbar and 1500øC within minimum temperatureuncertainty, Geophys.Res. Lett., 9, No. 8, 805-807, 1982. Wang, Y., Electronmicroscopyandx-ray diffractionstudieson structural Geophysical Monograph Series phasetransitionsin MgSiO3 perovskite,Ph.D. Thesis,StateUniversity of New York at Stony Brook, 1991. Wang, Y., R. C. Liebermann, and J. N. Boland, Olivine as an in situ piezometerin high pressureapparatus,Phys. Chem.Minerals, 15, 493- Vol. 67 497, 1988. Wang,Y., F. Guyot,A. Yeganeh-Haeri,andR. C. Liebermann,Twinning in MgSiO3 perovskite,Science,248, 468-471, 1990. LIEBERMANN ET AL. 31
© Copyright 2024