Standarditilat Ilmiömallinnus prosessimetallurgiassa Syksy 2015 Teema 2 - Luento 2 Prosessimetallurgian tutkimusryhmä Eetu-Pekka Heikkinen, 2015 Tavoite • Tutustua standarditiloihin • Miksi käytössä? • Millaisia käytössä? • Miten huomioitava tasapainotarkasteluissa? Prosessimetallurgian tutkimusryhmä Eetu-Pekka Heikkinen, 2015 Miten standarditilat näkyvät tasapainotarkasteluissa? • Tasapainojen määrityksessä keskeisessä roolissa on Gibbsin vapaaenergia (tai liuosten tapauksissa kemiallinen potentiaali) • Kemiallinen potentiaali sisältää standardiarvon ja liuosominaisuudet kuvaavan termin: i = i0 + RTlnai = i0 + RTlnxi + RTlnfi Prosessimetallurgian tutkimusryhmä Eetu-Pekka Heikkinen, 2015 Miten standarditilat näkyvät tasapainotarkasteluissa? i = i0 + RTlnai = i0 + RTlnxi + RTlnfi • Tästä seuraa, että aktiivisuus ja aktiivisuuskerroin eivät ole yksiselitteisiä, vaan riippuvaisia valitusta standarditilasta • Ilmoitettaessa jonkin aineen aktiivisuus(kerroin) tietyssä liuoksessa on aina ilmoitettava myös käytetty standarditila! Prosessimetallurgian tutkimusryhmä Eetu-Pekka Heikkinen, 2015 Miten standarditilat näkyvät tasapainotarkasteluissa? i = i0 + RTlnai = i0 + RTlnxi + RTlnfi • Esimerkiksi edellä on todettu, että aktiivisuus saavuttaa arvon 1 puhtaille aineille • Oikeampaa olisi sanoa, että aktiivisuus saavuttaa arvon 1, kun aine esiintyy standarditilaisena • Jos standarditilaksi on valittu puhdas aine (kuten usein tehdään) niin ensimmäinen väitekin pitää paikkansa Prosessimetallurgian tutkimusryhmä Eetu-Pekka Heikkinen, 2015 Prosessimetallurgian tutkimusryhmä Eetu-Pekka Heikkinen, 2015 Miksi standarditilat? • Mittaustekniset syyt – Aktiivisuuksien mittaus galvaanisia kennoja käyttäen (mitataan esim. jännitettä) – Ei absoluuttisia arvoja – On valittava joku nollapotentiaali johon verrataan (esim. puhdas aine) – Standarditilat • Käytännön laskenta – Valitaan sovelluksen kannalta käytännöllisin standarditila Prosessimetallurgian tutkimusryhmä Eetu-Pekka Heikkinen, 2015 Standarditiloja valittaessa voidaan muuttaa ... • ... pistettä, jossa aktiivisuus saavuttaa arvon 1 ja kemiallinen potentiaali saavuttaa standardiarvonsa (i = i0) – Koostumus (Pitoisuudet 0 ja 1 yleisimmät) – Olomuoto (Yleensä komponentin tai liuoksen stabiilein olomuoto) • ... sitä, miten aktiivisuus lähestyy arvoa 1 ja kemiallinen potentiaali standardiarvoaan, kun koostumusta muutetaan – Pitoisuuskoordinaattien muutokset – Ainemääräosuus, painoprosenttiosuus, ... Prosessimetallurgian tutkimusryhmä Eetu-Pekka Heikkinen, 2015 Erilaisista standarditilavalinnoista • Jos mahdollista, kannattaa valita käytännön kannalta sopivin vaihtoehto • Periaatteessa standarditilat voidaan valita äärettömän lukuisilla eri tavoilla, mutta käytännössä ne rajoittuvat muutamaan yleisimmin käytössä olevaan tapaukseen • Pyrometallurgiassa keskeisimpiä – Raoultin aktiivisuus – Henryn aktiivisuus Prosessimetallurgian tutkimusryhmä Eetu-Pekka Heikkinen, 2015 Kuva: Niemelä (1981) Diplomityö. TKK. Kuva: Chang et al.: Journal of phase equilibria. 18(1997)2, 128-135. Prosessimetallurgian tutkimusryhmä Eetu-Pekka Heikkinen, 2015 Raoultin aktiivisuus, aiR • Raoultin aktiivisuus on puhtaan osaslajin suhteen määritetty aktiivisuus • Raoultin standarditila on puhtaan osaslajin suhteen määritetty standarditila • ai = 1 kun i on puhdas aine i = i0 + RTlnaiR = i0 + RTln(xifiR) = i0 + RTlnxi + RTlnfiR – i0 on puhtaan osaslajin i kem. potentiaali Prosessimetallurgian tutkimusryhmä Eetu-Pekka Heikkinen, 2015 Henryn aktiivisuus , aiH • Henryn aktiivisuus on äärettömän laimean liuoksen suhteen määritetty aktiivisuus • Vastaavasti Henryn standarditila on äärettömän laimean liuoksen suhteen määritetty standarditila • ai 1 kun i on puhdas aine (paitsi erikoistapauksissa (= ideaaliliuos)) Prosessimetallurgian tutkimusryhmä Eetu-Pekka Heikkinen, 2015 Raoultin ja Henryn lait • Raoult: lim fiR = 1 kun xi 1 • Henry: lim fiH = 1 kun xi 0 – Käytetty pitoisuusmuuttuja ilmoitetaan yleensä (paino)prosentteina; ei mooliosuutena (xi) lim fiH = 1 kun (p%-i) 0 – Henryn laki ei ole kuitenkaan sidottu mihinkään tiettyyn pitoisuusmuuttujaan Prosessimetallurgian tutkimusryhmä Eetu-Pekka Heikkinen, 2015 Raoultin ja Henryn lait Prosessimetallurgian tutkimusryhmä Eetu-Pekka Heikkinen, 2015 Raoultin ja Henryn lait Aktiivisuus lähestyy Raoultin lakia, kun xSi → 1 Aktiivisuus lähestyy Henryn lakia, kun xSi → 0 Prosessimetallurgian tutkimusryhmä Eetu-Pekka Heikkinen, 2015 Sulaan rautaan liuenneen piin aktiivisuus Kuva: Elliott, Gleiser & Ramakrishna (1963) Thermochemistry for steelmaking. Volume II. Thermodynamic and transport properties. Mikä on aFe, kun xFe on 0,4? 0,81 Mikä on aCu, kun xFe on 0,7? 0,77 Raoultin ja Henryn lait Mikä on fRFe, kun xFe on 0,2? 3,6 Mikä on fHCu, kun [p%]Cu on 35 %? 0,25 Prosessimetallurgian tutkimusryhmä Eetu-Pekka Heikkinen, 2015 Raoultin ja Henryn lakien mukaiset aktiivisuudet Prosessimetallurgian tutkimusryhmä Eetu-Pekka Heikkinen, 2015 Raoultin ja Henryn lakien mukaiset aktiivisuudet Prosessimetallurgian tutkimusryhmä Eetu-Pekka Heikkinen, 2015 Raoultin lain mukainen atomiprosenttiaktiivisuus Prosessimetallurgian tutkimusryhmä Eetu-Pekka Heikkinen, 2015 Raoultin lain mukainen painoprosenttiaktiivisuus Prosessimetallurgian tutkimusryhmä Eetu-Pekka Heikkinen, 2015 Raoultin mukaisten standarditilojen muuttaminen Henryn mukaisiksi Prosessimetallurgian tutkimusryhmä Eetu-Pekka Heikkinen, 2015 Raoultin mukaisten standarditilojen muuttaminen Henryn mukaisiksi Prosessimetallurgian tutkimusryhmä Eetu-Pekka Heikkinen, 2015 Standarditilojen muuttaminen toisikseen Muutos Mooliosuus, puhdas aine Mooliosuus, ääretön laimennus Mooliosuus, puhdas aine at-%, ääretön laimennus Mooliosuus, puhdas aine p-%, ääretön laimennus Mooliosuus, ääretön laimennus p-%, ääretön laimennus at-%, ääretön laimennus p-%, ääretön laimennus Prosessimetallurgian tutkimusryhmä Eetu-Pekka Heikkinen, 2015 G0 RTln(fi R,0) RTln[(fi R,0)/100] RTln[(fi R,0M l )/(100M i )] RTln[(M l )/(100M i )] RTln(M l /M i ) • • Sulaan rautaan liuenneen piin aktiivisuuskerroin määrättiin seuraavasti: sulan raudan (T = 1600 C) ja puhtaan kvartsin SiO2(s) annettiin asettua tasapainoon atmosfäärissä, jossa oli 97,55 til-% H2 ja 2,45 til-% H2O ja tämän jälkeen analysoitiin raudan piipitoisuus, joksi saatiin 0,50 p-%. Mikä on piin aktiivisuuskerroin tällä pitoisuudella sulassa raudassa (T = 1600 C), kun standarditilana on puhdas sula pii samassa lämpötilassa? Mikä on piin aktiivisuuskerroin tällä pitoisuudella sulassa raudassa (T = 1600 C), kun standarditilana on hypoteettinen 1 p-% piiliuos? G0f(H2O,1873K) = -34000 cal/mol G0f (SiO2,1873K) = -137000 cal/mol Si (l) = [Si]Fe (p-%) G0 = -28500-5,8T (cal/mol) MSi = 28,09 g/mol Prosessimetallurgian tutkimusryhmä Eetu-Pekka Heikkinen, 2015 MFe = 55,85 g/mol
© Copyright 2025