Thyro-AX - Advanced Energy

1
THYRO-AXTM
THYRISTOR-LEISTUNGSSTELLER / THYRISTOR POWER CONTROLLER
DEZEMBER 2014 / DECEMBER 2014
8000030962 DE/EN - V5
2
3
CONTENTS
List of illustrations and tables
Abbreviations
Key features 5
6
7
1. Safety notes 1.1 Obligatory instruction
1.2 Appropriate usage 1.3 Residual hazards of the product 1.4 Incorrect operation and their consequences 1.5 Scope of supply 1.6 Storage 1.7 Assembly 1.8 Connection 1.9 Maintenance, service, faults 1.10 Replacement of the integrated semiconductor fuse 1.11 Shut down, dis-assembly
8
8
8
9
9
10
10
10
10
10
12
12
2. Safety requirements 2.1 Important instructions and explanations 2.2 General danger information
2.3 Qualified personnel 2.4 Requirements to the operator 2.5 Intended use 2.6 Liability
2.7 Guidelines
13
13
14
16
16
16
17
17
3. Notes on these operating instructions
3.1 Validity
3.2 Type designations 3.3 Handling 3.4 Loss of warranty 3.5 Copyright
3.6 Further information on copyright
18
18
18
19
20
20
20
4. Contact 4.1 Technical queries 4.2 Commercial queries 4.3 Service
4.4 Internet 21
21
21
21
21
5. Commissioning 5.1 Connections 5.1.1 Grounding 5.1.2 Power supply and load 5.1.3 Electronic supply 5.1.4 Fan 5.1.5 Control signals 5.1.6 USB interface 5.1.7 Connecting terminals (overview) 5.1.8 Connection diagrams 5.2 Load configuration
5.3 IP20 Protection 22
22
22
22
23
23
23
24
25
26
31
32
6. Description of functionality
6.1 Operating modes 6.1.1 Full wave mode TAKT
6.1.2 Phase angle firing VAR (only Thyro-AX 1A and 3A)
6.1.3 SST ramp in operating mode TAKT
6.1.4 Quick takt mode QTM (only Thyro-AX 1A)
6.1.5 Switch mode SWITCH
6.2 Setpoint processing 6.3 Control modes 6.4 Limitations 6.5 Pulse inhibition 6.6 Current and voltage transformer
6.7 Display via analog output 6.8 Fault, status and monitoring messages 6.8.1 Overview 6.8.2 Fault signaling relay K1
6.9 Monitoring
6.9.1 Monitoring the mains voltage 6.9.2 Device temperature monitoring
38
38
38
38
39
39
39
39
42
44
45
45
46
46
47
49
50
50
51
7. Display and operational elements 7.1 Operation of touch display 7.2 Actual value view and actual value button 7.3 Message overview and acknowledgment
7.4 EasyStart
7.5 EasyStart identification
7.6 Restriction codes for parameterization and digital setpoint 2 7.7 Save and load parameters with USB stick 7.8 Menu structure
7.9 Thyro-Tool AX
7.9.1 Manage device and files 7.9.2 Parameter
52
52
54
55
57
60
60
61
62
63
66
67
4
5
8. Mains load optimization
8.1 Internal mains load optimization
8.2 Synchronization with dASM module or dASM bus module 8.3 Synchronization with the Thyro-Power Manager 8.4 Software synchronization with solid delay 70
70
70
71
71
9. Load monitoring
74
10. Multi I/O
78
11. Dimension drawings
80
12. Technical data 12.1 Technical data 12.2 Approvals and conformity
12.3 Type overview 104
104
110
112
LIST OF ILLUSTRATIONS AND TABLES
Fig. 1
Connection diagram Thyro-AX 1A
Fig. 2
Connection diagram Thyro-AX 2A
Fig. 3
Connection diagram Thyro-AX 3A with load in delta or star connection
without N
Fig. 4
Connection diagram Thyro-AX 3A with load in star connection with N
Fig. 5
Connection diagram Thyro-AX 3A with load in open delta connection
Fig. 6
Set point inputs and effective set point
Fig. 7
Contact assignment fault signaling relay K1
Fig. 8
Examples of areas to be pressed for actual value button
Fig. 9
Connection to local installed server
Fig. 10
Several open tabs
Fig. 11
Minimize status messages
Fig. 12
Maximize status messages
Fig. 13
Separate tab
Fig. 14
Preview of arranged tabs
Fig. 15
Open thyro files in file explorer
Fig. 16
Change name of device (re-start is necessary)
Fig. 17
Transfer of parameter file
Fig. 18
Drop-down menu
Fig. 19
Field
Fig. 20
Checkbox
Fig. 21
Example of 4 controllers
Fig. 22
Internal mains load optimization
Fig. 23
Thyro-Power Manager wiring diagram
Fig. 24
Digital set point 2 via external buttons
Tab. 1
Connecting terminals (overview)
Tab. 2
Effects in the case of load resistance change
Tab. 3
Effective limitations
Tab. 4
Error
Tab. 5
Status
Tab. 6
Monitoring
Tab. 7
Limits of mains voltage monitoring
Tab. 8
Acknowledgment
Tab. 9
Menu structure Thyro-AX
Tab. 10
Load resistance
Tab. 11
Multi I/O
Tab. 12
Multi I/O signals
Tab. 13
Connection data of the power connection
Tab. 14
Tightening torques
Tab. 15
Thyro-AX 1A …H RLP2
Tab. 16
Thyro-AX 2A …H RLP2
Tab. 17
Thyro-AX 3A …H RLP2
26
27
28
29
30
41
49
55
63
63
64
64
65
65
66
67
68
68
69
69
72
72
73
107
25
44
45
47
48
49
51
56
62
75
78
106
108
109
112
113
114
6
7
ABBREVIATIONS
KEY FEATURES
AN1 - phase angle of the 1st half wave
SST - soft-start time
SYT - synchronized clock
T0 - cycle period
TS - switch-on time
TAKT - full wave mode Thyrotakt
VAR - phase angle firing Thyrovar
QTM - quick takt mode
SWITCH - switch mode
• Integrated semiconductor fuse
• Type range 230-600 V~, 16-1500 A, single phase, two phase uand three phase
• Load voltage from 24 V~
• Touch display capable of full graphics
• Electronic supply with 230V~/110V~ (85 V-265 V permissible)
• Ohmic load and transformer load as well as load with large Rwarm /Rcold (≤ 6) and configurable
peak current limitation up to 3 x Inom in operating mode VAR.
• Soft-start function for transformer load
• Channel separation, needed in case of counter voltage
• Load current monitoring
• Measurement of real phase value (current, voltage, power and resistance)
• Fuse monitoring
• 5 Multi-I/Os
• 1 signaling relay
• 3 analog outputs
• Flexible connection: supply and outflow from above or below as selected
• Control modes U, U2, I, I2; P
• Thyristor short circuit protection
• Operating modes TAKT, VAR, SWITCH and QTM (QTM only in the case of the single phase
device, VAR only in the case of the single and three phase device)
•M
ains load optimization: internal for operating modes QTM and TAKT, connection for external
mains load optimization e.g. Thyro-Power Manager (QTM only in the case of single phase device)
• Control by analog or digital setpoint, via PC, touch display or via optional bus adapter
• Data logger
• Operating hours counter
• Energy counter
• Internal/external measuring transformer
• USB interface
• Safe isolation in accordance with DIN EN 50 178
• UL approval (for standard devices 16 - 350A)
Options:
• Coupling to different bus systems e.g. PROFIBUS DPV1, Modbus RTU, DeviceNet, CANopen,
PROFINET, EtherNet/IP and Modbus TCP. Other bus systems on request.
• Connection for optional visualization and commissioning software Thyro-Tool AX via USB
(optional also via RS-232 adapter).The Thyro-Tool Family can also be used to an certain extent.
8
9
1. SAFETY NOTES
The safety notes and the operating instructions are to be read carefully before installing and
commissioning.
1.1 OBLIGATORY INSTRUCTION
These safety notes and operating instructions shall carefully be read by
all persons deployed for work using and employing the Thyro-AX prior
to assembly, installation and the initial start-up of the Thyro-AX. These
operating instructions are part of the Thyro-AX.
The operator of the device is committed to provide these operating instructions without limitation to all persons, who transport the Thyro-AX,
start it up, maintain it, or perform other work tasks to it.
In accordance with the Product Liability Act the manufacturer of this
product is obligated to inform about and warn against
• other than the intended use of a product
• the residual hazards of a product as well as
• incorrect usages and their consequences
The following information is intended for this purpose. This information
should warn the product user and protect him and his appliances.
1.2 APPROPRIATE USAGE
The Thyro-AX is a power controller which is capable of communication. It
can be used anywhere where alternating voltages, alternating currents
or power need to be regulated in thermic process engineering. The
Thyro-AX has several different operation and control modes, good
connection to process and automatization technology, high regulation
accuracy and simple handling.
• The Thyro-AX is a component which may only be used to control
and regulate electric energies in industrial alternating or three-phase
networks.
• The Thyro-AX may at most be operated with the maximum permissible
connection values in accordance with the details on the type plate.
• The Thyro-AX may only be operated in connection with an appropriate upstream mains disconnecting device (e.g. switch, take note of DIN
EN 50110-1)
• The Thyro-AX is not functional on its own and must be project
planned for its appropriate usage in order to minimize the residual
hazards of the product.
• The Thyro-AX may only be used for the purpose for which it was
intended, as persons may otherwise be exposed to dangers (e.g.
electric shock, burns) and systems also (e. g. overload).
• It is not permitted to make any unauthorized modifications to the
device or to use any spare parts or replacement parts not approved
by Advanced Energy, or to use the device for any other purpose.
• The warranty obligations of the manufacturer are only applicable if
these operating instructions are observed and complied with.
• It must be ensured that in the case of an error no uncontrolled large
currents, voltages of power can occur in the circuit.
• In the case of an error even with appropriate usage it is possible
that the currents, voltages or power in the load circuit are no longer
affected by the device (example: in the case of the destruction of of
the power components (fully alloyed or high resistance) the following
reactions may result: current interruption, half wave operation,
continual flow of energy).
1.3 RESIDUAL HAZARDS OF THE PRODUCT
Even with intended use it is possible, in the case of an error, that the
currents, voltages or power in the load circuit are no longer affected by
the Thyro-AX.
If the power components are destroyed, for example, the following
cases are possible: current interruption, continual flow of energy.
If such a case occurs, then the occurring load voltages and currents result from the physical sizes of the overall circuit. Throughout the project
planning of the system it must be ensured, that no uncontrolled large
currents, voltages or power can occur.
1.4 INCORRECT OPERATION AND THEIR
CONSEQUENCES
In the case of incorrect operations, higher power, voltages or currents
than intended can reach the thyristor power controller or the load. This
can cause damage to the thyristor power controller or the load.
In particular, factory-set parameters may not be altered in such a way
that the Thyro-AX is overloaded.
10
11
1.5 SCOPE OF SUPPLY
The supply consists of the following parts:
• Thyro-AX
• Accessory bag with screw/push terminals
• Operating instructions
• Safety note stickers
1.6 STORAGE
The devices may be stored originally OEM packaged in rooms, which
are dry and ventilated.
• permissible ambient temperature: -25 °C to +55 °C
• permissible relative air humidity: max. 85%
For longer storage durations, the devices should be contained in airtight
plastic skins with the addition of commercially available drying agents.
1.7 ASSEMBLY
• If stored in cold environments it must be ensured that the device is
absolutely dry before commissioning. Therefore allow at least 2 hours
acclimatization time before commissioning.
• Ensure sufficient ventilation and de-aeration of the cabinet if mounted
in a cabinet.
• Observe minimum spacing.
• Ensure that the device cannot be heated up by heat sources below it.
(see Technical data).
• Ground the device in accordance with the local regulations.
• Connect the device in accordance with the connection diagrams.
For further details see the chapter „Installation“.
1.8 CONNECTION
Before connection, the indicated voltage on the type plate is to be
compared with the mains voltage to make sure they match. The electrical
connection is made at the points labelled on the Thyro-AX.
1.9 MAINTENANCE, SERVICE, FAULTS
The symbols used in the following are explained in the chapter on
safety requirements.
In order to avoid damage to personnel or property the user must note
the following points before all work:
CAUTION
In the case of smoke or smell development, as well as in the case of
fire, the power controller shall immediately be disconnected from the
power supply.
CAUTION
For maintenance and repair works the power controller must be disconnected from all external voltage sources and safeguarded against it
being switched on again. After switching off wait at least two minutes
for the snubber capacitors to discharge. The absence of voltage is to
be ascertained using appropriate measurement instruments. The device
is to be grounded and short-circuited. Adjacent components under
voltage are to be covered or separated off. These activities may only be
carried out by an electrically qualified person. The local electro-technical regulations are to be adhered to.
CAUTION
The thyristor controller contains voltages which are hazardous. Repairs
are strictly only to be carried out by qualified and trained maintenance
personnel.
CAUTION
Hazard of electric shocks. Even after the separation from the mains,
capacitors can still contain dangerously high levels of energy.
CAUTION
Hazard of electric shocks. Even with a non-activated thyristor controller the load circuit is not separated from the mains by the thyristor
controller.
ATTENTION
Different power components are screwed in place with exact torques
according to their function. For safety reasons repairs to power components are to be carried out by Advanced Energy Industries GmbH.
Repairs by personnel of the operator require a written confirmation of
the manufacturer.
12
13
1.10 REPLACEMENT OF THE INTEGRATED SEMICONDUCTOR FUSE
The device has got an integrated semiconductor fuse F1 for each
power unit which is designed protection reasons for the thyristor. If it
has to be replaced, the device shall immediately be disconnected from
the power supply. Before resumption of operation it is responsible for
seeing that all screws are fastened and no unfasten screw are in the
cabinet.
1.11 SHUT DOWN, DIS-ASSEMBLY
If shutting down and dis-assembling the device for the reason of venue
change or for disposal purposes the following safety rules must be
complied with prior to the beginning of all work performed:
ATTENTION MAINS VOLTAGE!
Safety rules for work performed to electrical facilities:
1. Disconnect the device from the power supply (establish a voltage
free status)
2. Secure against re-activation
3. Verify by measurement that there is no voltage present
4. Ground and short-circuit equipment
5. Cover or separate adjacent parts which are under voltage
For dis-assembly, perform the following steps:
1. Separate the device from the 230VAC, respectively 110VAC, power
supply.
2. Separate all other connections.
Electrical connections are thus dis-assembled and now, the device can
be removed by dis-assembly from the overhead rail.
2. SAFETY REQUIREMENTS
2.1 IMPORTANT INSTRUCTIONS AND EXPLANATIONS
For the protection of personnel and the maintenance of good working
order, usage and repairs must be in line with the guidelines, and the
safety requirements listed must be adhered to. The personnel who set
up/disassemble the devices, start them up, operate them, maintain
them, must know and adhere to these safety requirements. All works
may only be carried out by specialist personnel trained for the purpose
and equipped with the tools, appliances, means of testing and materials
required and intended for that purpose.
In these operating instructions, there are important warnings before
dangerous actions. These warnings are divided into the following classes
of hazards:
DANGER
Hazards that can lead to serious injuries or fatal injuries.
WARNING
Hazards that can lead to serious injuries or considerable damage to
property.
CAUTION
Hazards that can lead to injuries and damage to property.
CAUTION
Hazards that can lead to minor damage to property.
14
15
The warnings can also be supplemented with a special danger symbol
(e.g. „Electric current“ or „Hot device“) , e.g.
in case of risk of electric current or
in case of risk of burns.
In addition to the warnings, there is also a general note for useful
information.
NOTE
Content of note
2.2 GENERAL DANGER INFORMATION
DANGER
ELECTRIC CURRENT
Hazards that can lead to serious injuries or fatal injuries.
WARNING
ELECTRIC CURRENT
Risk of injury from current carrying parts
• Never operate the device without covering.
CAUTION
HOT DEVICE
Risk of burns from heat sinks and adjacent plastic parts (> 70 °C possible)
Do not touch the hot parts of the device.
Affix the warning sign “Risk of burns“ in the immediate vicinity of the
device.
DANGER
HAZARDS DURING INSTALLING
Not adhering to the safety requirements in the operating instructions of
the power controllers being used can lead to danger of injury/danger
of damaging the device or system.
- Adhere to all safety requirements in the chapter “Safety” of the operating instructions of the power controllers being used.
DANGER
UNSAFE SYSTEM DUE TO INCORRECT INSTALLATION
Incorrect installation can lead to unsafe operation of the system.
Therefore it is essential to maintain the following specifications:
- Only install the device in an upright position.
- Ensure sufficient ventilation and de-aeration of the cabinet if mounted
in a cabinet.
- Observe minimum spacing (self-ventilated: clearance: 150 mm above,
100 mm below). The devices can be installed next to one another
without spacing between.
- Ensure that the device cannot heat up as a result of heat sources from
below (the power loss is listed in the type overview table, see chapter
Technical data).
- Ground the device in accordance with the local regulations (ground
screw/bolt for protective conductor connection on the heat sink). The
grounding also serves for EMC means (Y - capacitor 4.7 nF + 12 MΩ).
- Cover energized parts
CAUTION
USE OF INCORRECT CONNECTION CABLES
Incorrect connection cables can lead to functional faults.
Use shielded control cables to connect the control signals.
For use in UL conditions: for power connections only use 60 °C or 75 °C
copper conductors (in accordance with the information in the Technical
data).
16
17
2.3 QUALIFIED PERSONNEL
Only qualified personnel who are familiar with the pertinent safety and
installation regulations may perform the following with the Thyro-AX:
• transport
• installation
• connection
• commissioning
• maintenance
• testing
• operation
These operating instructions must be read carefully by all persons working with or on the device prior to installation and initial start-up.
2.4 REQUIREMENTS TO THE OPERATOR
The person responsible for the system must ensure that
• Safety notes and operating instructions are available and adhered to.
• Operating conditions and technical data are heeded.
• Protective devices are used.
• Maintenance personnel are informed immediately or the Thyro-AX is
taken out of action immediately if abnormal voltages or noises, higher
temperatures, waves or similar occur, in order to identify the cause.
• The accident prevention regulations valid in the respective country of
use and the general safety regulations are observed.
• All safety devices (covers, warning signs etc.) are present, in perfect
condition and are used correctly.
• The national and regional safety regulations are observed.
• The personnel have access to the operating instructions and safety
regulations at all times.
These operating instructions contain all the information required by
skilled personnel using the Thyro-AX. Additional information and notes
for non-qualified persons and for the use of the Thyro-AX outside of
industrial assemblies are not contained in these operating instructions.
The warranty obligations of the manufacturer are only applicable if
these operating instructions are observed and complied with.
2.6 LIABILITY
No liability is burdened for non-intended by the manufacturer use of
the Thyro-AX. The operator or user, respectively, shall burden the responsibility for possibly necessary measures for the prevention of people
and asset damage. In case of complaints, please contact us immediately
and include the following information:
• type designation
• fabrication number /serial number
• complaint description
• duration in operations
• ambient temperature
• mode of operation
2.7 GUIDELINES
The devices of the type series Thyro-AX comply with the currently
applicable EN 50178 and EN 60146-1-1. BGV A3 is considered by the
compliance with EN 50274.
The CE sign attached to the device confirms compliance with the EC
directives for 2006/95/EEC for low voltage and 2004/108/EEC for
electro-magnetic compatibility, if the installation and commissioning
instructions described within the operating instructions are followed.
2.5 INTENDED USE
CAUTION
Regulations and definitions for specialists are included in DIN EN
50110-1.
The Thyro-AX may only be used for the purpose for which it was intended, as persons may otherwise be exposed to dangers (e.g. electric
shock, burns) and systems also (e. g. overload).
Safe separation in accordance with EN 50178.
It is not permitted to make any unauthorized modifications to the
Thyro-AX or to use any spare parts or replacement parts not approved
by Advanced Energy, or to use the Thyro-AX for any other purpose.
18
19
3. NOTES ON THESE OPERATING INSTRUCTIONS
3.1 VALIDITY
These operating instructions correspond with the technical status of
the Thyro-AX at the time of issue. The content is not the subject of the
contract, but rather serves to provide information. We reserve the right
to make amendments to the details in these operating instructions,
in particular to technical data, operation, measurements and weights.
Advanced Energy reserves the right to make content amendments
and technical alterations to the details in these operating instructions
unannounced. Advanced Energy cannot be held responsible for any inaccuracies or incorrect details in these operating instructions as there is
no obligation to make ongoing updates to these operating instructions.
These operating instructions only apply to the Advanced Energy power
controller Thyro-AX in the versions of the types indicated on the cover
sheet. The safety notes contained are to be noted in particular.
3.2 TYPE DESIGNATIONS
The type designation of the thyristor power controller is derived from
the configuration of the power unit and other features.
Thyro-AX 1AThyristor controller with single phase power unit, suited
for single phase loads
Thyro-AX 2AThyristor controller with two phase power unit, suited
for symmetrical loads in three phase operation in the
three phase economy circuit (connection to L1 and L3)
Thyro-AX calculates the values of load current, load
voltage, power and resistance on phase L2 by measured values of phase L1 and L3.
Thyro-AX 3AThyristor controller with three phase power unit, suited
for three phase loads
DESIGNATION CHARACTERISTICS
(EXAMPLE)
Thyro-AX 3AThree phase power controller
with three phase power unit
...400- with 400V type voltage ...280 with 280A type current H with integrated semiconductor fuse
F with fan
R with signaling relay
L with load monitoring
P with additional power control
2 Identification 2, Thyro-AX series
DIFFERENT
VERSIONS OF THE
POWER CONTROLLER
230 V, 400 V,
500 V, 600 V
16 ... 1500 A
*
Example:
Thyro-AX 3A...RLP2
* device-specific
Thyro-AX ...H RLP2
Thyristor power controller with integrated semiconductor fuse, system
bus interface, fully graphically capable touch display, additional 230 V~/
110 V~ electronic supply input, signaling relay, load current monitoring and analog output, channel separation, with the operating modes
TAKT, VAR, QTM and SWITCH, synchronization option for mains load
optimization, the control modes U, U², I, I² and P. Suitable for the visualization and commissioning software Thyro-Tool AX.
3.3 HANDLING
These operating instructions for the Thyro-AX are structured in a manner
so that according expert personnel may perform all work necessary for
commissioning, maintenance, and repair.
If threats to personnel and material cannot be ruled out for certain
work, such tasks are marked with a pictogram, from which the according
content may be extracted from the before mentioned chapter „Safety
requirements“.
20
21
3.4 LOSS OF WARRANTY
Our supplies and services are subject to the general conditions of
supply for products of the electrical industry, as well as our general
sales conditions. Claims in connection with supplied goods must be
submitted within eight days upon receipt, along with the packing slip.
Claims made later cannot receive consideration.
Advanced Energy will rescind all possible obligations such as warranty
agreements, service contracts, etc. entered into by Advanced Energy
or its distributors without prior notice if maintenance and repair work is
carried out using anything other than original Advanced Energy spare
parts or spare parts purchased from Advanced Energy.
3.5 COPYRIGHT
No part of these operating instructions may be transmitted, reproduced and/or copied by any electronic or mechanical means without the
express prior written permission of Advanced Energy Industries GmbH.
© Copyright Advanced Energy Industries GmbH 2014.
All rights reserved.
3.6 FURTHER INFORMATION ON COPYRIGHT
Thyro-AXTM is an international registered trademark of Advanced
Energy Industries GmbH.
All other company and product names are (registered) trademarks of
the respective owners.
4. CONTACT
4.1 TECHNICAL QUERIES
If you have any technical queries regarding the subjects dealt with in
these operating instructions, please get in touch with our team for
power controllers:
Phone: +49 (0) 2902 763-520 or
Phone: +49 (0) 2902 763-290
4.2 COMMERCIAL QUERIES
If you have any commercial queries on power controllers, please get in
touch with:
Phone: +49 (0) 2902 763-558
powercontroller@aei.com
4.3 SERVICE
Our team is at your service on the following hotline:
Advanced Energy Industries GmbH
Emil-Siepmann-Straße 32
D-59581 Warstein
Tel. +49 (0) 2902 763-0
4.4 INTERNET
Further information about our company or products please see
www.advanced-energy.com
22
23
5. COMMISSIONING
The Thyro-AX may only be started when there is absolutely no danger
to persons or system.
• Protect the device against dust and damp.
• Ensure that the ventilation openings are not blocked.
5.1 CONNECTIONS
The device has to be connected to the power supply and to further
external components or devices (PLC, Thyro-Power Manager or PC),
which are contingent to the application, in accordance with the connection diagrams.
5.1.1 GROUNDING
The grounding of the device shall be performed in accordance with the
local regulations (grounding screw/nut for connecting the protective
conductor to the heat sink). Grounding also serves for EMC means
(Y capacitor 4.7 nF + 12MΩ).
5.1.2 POWER SUPPLY AND LOAD
The connection of the power supply takes place in accordance with the
illustrations.
1. Switch off power supply and ensure it cannot be switched back on
again.
2. Ground the power controller.
3. Connect the load to the terminals (T1 + T3 in the case of the
Thyro-AX 2A, T1 + T2 + T3 in the case of 3A devices, or only T1 in
the case of the Thyro-AX 1A device)
4. Connect the terminals L1, L2 and L3 to the circuit breaker. In the case
of Thyro-AX 2A and 3A devices the connection must be made to a
clockwise rotating field in the power circuit.
5. Only in the case of Thyro-AX 1A and 2A devices: connect terminal
X1.1 to N or the other / middle phase. When connecting to a phase
a 2A slow acting fuse is required, at N the connection can be made
directly. The terminals (X1.1 and X1.2, 1.5mm2, grid 3.5) are bridged
internally.
6. Make any other necessary connections.
The input voltage is used simultaneously for mains synchronization.
Using flexible connection the terminals for the power can be used from
above or from below. Contacts with the same designation are connected with one another internally so that the connections can be divided
up to enable various combinations.
WARNING
HAZARDS DURING INSTALLATION
Danger of injury/damage to the device or system
- Take note of the labelling for the connections, as contacts with the
same designation are connected internally and if confused there is a
risk of a short-circuit occuring.
5.1.3 ELECTRONIC SUPPLY
The electronics of the control device is supplied by a separate connection with 230V~ / 110V~ (85V - 265V 47Hz - 63Hz). The connection
is made at terminals X4.1 and X4.3 (1.5mm2, grid 3.5). Terminals X4.1
and X4.2, along with X4.3 and X4.4 are internally bridged and offer an
alternative connection option.
The connection cables are to be fused in accordance with the applicable regulations. An internal 2A fuse protects the device in the case of
internal short-circuits. In the case of Thyro-AX 2A and 3A each power
unit must be connected separately to the electronic supply, this is wired
up correspondingly at delivery.
5.1.4 FAN
Devices with a rated current from 230A and more require a power
supply of 230V~ for fan at terminal X7. Devices with a rated current of
30A and 100A come with a fan which is feed in by the device. In this
case no extra connection is required. The connection is wired up correspondingly at delivery.
5.1.5 CONTROL SIGNALS
The control signals influence the functional mode of the device. Shielded
control cables must be used for the connection of the control signals.
The following control signals are required for the operation of the
device:
- Connect setpoint (setpoint 1 to X2.4 (signal) and X2.3 (ground) or
connect setpoint 2 to X2.11 (signal) and X2.3 (ground). Alternatively
via bus module or PC)
- Pulse inhibition (connect terminal X2.2 with ground X2.1)
If the pulse inhibition bridge is not connected then the device is
blocked and will not function. Communication via the interfaces
continues to be possible.
Please read carefully the information given in chapter 5.1.6. when using
the USB interface.
24
25
5.1.6 USB INTERFACE
When using the USB interface, e.g. for the use of the Thyro-Tool AX, the
special Advanced Energy USB cable has to be used between the PC and
Thyro-AX to avoid malfunctions.
The shorter part of the wiring cable (plug - filter, approx. 30 cm) has
to be connected to Thyro-AX while the longer part of the wiring cable
(filter - plug) has to be connected to the USB plug of the PC.
5.1.7 CONNECTING TERMINALS (OVERVIEW)
TERMINAL DESCRIPTION GRID DI
MENSION
X3 .1 root, common connection5.08
.2
N/O contact, open when there is a fault
(closed circuit principle)
.3 N/C contact, closed when there is a fault
X22 .1bus setpoint activation (factory setting)/ 3.5
setpoint switchover
.2 TxD / connection to bus module
.3 RxD / connection to bus module / multi I/O 3 (In)
.4 control ground
.5 connection to slave power section .6 connection to slave power section .7 control ground
.8 analog output 3 0-10 V or 0(4)-20 mA
.9 multi I/O 1 (In/Out, default setting: In)
.10 external voltage transformer
.11 control ground
.12 external current transformer
.13 external current transformer
X2 .1 control ground
3.5
.2 pulse inhibition
.3 control ground
analog - setpoint input 1, max. 10 V, max. 20 mA / multi I/O 4 (In)
.4
.5 control ground
.6
sync. Out (internal mains load optimization) / multi I/O 2 (Out)
.7
sync. In (digital In, internal mains load optimization) / multi I/O 2 (In)
.8+ 5V output, e.g. for a setpoint potentiometer
(5 kΩ ≤ RPoti ≤ 10 kΩ)
.9 analog output 1, 0-10 V or 0(4)-20 mA
.10 ground potential, as may be shielded control cable
analog - setpoint input 2, max. 10 V, max. 20 mA / multi I/O 5 (In)
.11
.12 analog output 2, 0-10 V or 0(4)-20 mA
.13 control ground
X1 .1 auxiliary phase L2 / N
3.5
.2 auxiliary phase L2 / N
X4 .1 phase for additional electronics supply 3.5
.2 phase for additional electronics supply .3 N for additional electronics supply .4 N for additional electronics supply X7 .2 phase for fan
3.5
.3 ground for fan
TAB. 1 CONNECTING TERMINALS (OVERVIEW)
X8 6
X8 6
K6
T
C
PE
X6E 6
H
z
~
8
9
C
H
z
~
b
G
9
FIG. 2 CONNECTION DIAGRAM Thyro-AX 2A
Xb h
Xb h
Kh
X6 6
PE
.
+
PE
XhP h
x 6E 66 68 69
mA/V
mA/V
8
b
G
+
+~~hP kΩ
+~~hP kΩ
.
b
O
I
(
O
I
(
9
9
Xh h
) hP hh hb hG
mAHV
mAHV
) hP hh hb hG
b
mA/V
T C5z ~
T
G
G
b
mAHV
. +zI (
G
.
) hP hh hb hG
G
Xhb
Th Lh
Fh
Semiz
conductorz
Fuse
Lh Th
Xhh
RLoad
F6
Semi5
conductor5
Fuse
L6 T6
~ AC
(+V ~
to
bO+V~
Auxiliary
Voltagez
Supply
X. h
x 6E 66 68 69
RLoad
XI b
b
9
connection for
optional bus module
Xbb h
8
~
~ AC
~C,
to
8HCV~
Auxiliary
Voltage5
Supply
XT 6
,
,,
X88 6
8
Xz 8
q,,,
,,
ekgk,8/,,
,h
optional for potentiometer
b
G
Signallingz
relay
Master
(+V~ to bO+V~
N
PE
LG
Lb
Lh
Ckk6E,Ω
Ckk6E,Ω
T
8
8,P
slow
acting
x 6E 66 68 69
,,
8
9
Signalling5
relay
Master
,
F
Synck,,P,,P,8,qOuth
Synck,,5x,P,,P,8,qInh
Potk,,wCV
,,6
,P,
,8
,,8
Setpoint h
89EV/,CEPHEHz
,P,9,qInh
Sync~ Out x Multi IxO b AOutV
Sync~ In SYTz) x Multi IxO b AInV
Pot~ supply /+V
Analog output h
Shield x Ground
Setpoint b
Analog output b
,
,,
,89EA
ϑ
~C,,8HCV~
N
,6
XG h
Pulse inhibit
bGPVH +PxOPHz
Multi IxO G AInV
Extk,,
Extk,,
Analog output G
Multi IxO h AInxOutV
Ext~ voltage transducer
L8,qNh
Ext~ current transducer
Ext~ current transducer
PE
b
Xh h
Master
Xbb + O I
b
Xbb +zI bz.
Slave h
XhP h
bA x
slow
acting
F
XI b
G
Slave h
Xbb + O I
bGPVH +PxOPHz
,,9
,P,6,qInPOuth
Extk,,
Connection only
for types starting
from bGPA
ϑ
Connection only
for types starting
from bGPA
FIG. 1 CONNECTION DIAGRAM Thyro-AX 1A
ϑ
8
b
G
.
~ AC
(+V ~
to
bO+V~
Auxiliary
Voltagez
Supply
X. h
Xhb
TG LG
Fh
Semiz
conductorz
Fuse
Xhh
LG TG
This line is to connect by
the user
Ex works wiring modifiable
according the application
hP hh hb hG
Ext~ voltage transducer
X9 6
Ext~ current transducer
Ext~ current transducer
L6
26
27
5.1.7 CONNECTION DIAGRAMS
G
b
G
b
Xb h
Xb h
+
XhP h
O
I
(
+
.
+
+~~hP kΩ
+~~hP kΩ
.
b
G
+
G
FIG. 4 C
ONNECTION DIAGRAM Thyro-AX 3A WITH LOAD IN STAR
CONNECTION WITH N
+~~hP kΩ
+~~hP kΩ
.
b
Xh h
PE
O
I
mAHV
b
Xh h
O
I
(
O
I
(
bA x
slow
acting
F
) hP hh hb hG
XhP h
(
mAHV
) hP hh hb hG
) hP hh hb hG
mAHV
mAHV
) hP hh hb hG
optional for potentiometer
b
G
Signallingz
relay
Master
Kh
.
PE
optional for potentiometer
b
(+V~ to bO+V~
N
PE
N
LG
Lb
Lh
Xb h
Xb h
Kh
Signallingz
relay
Master
(+V~ to bO+V~
N
Pulse inhibit
b
b
XI b
G
G
mAHV
. +zI (
G
G
.
b
G
.
~ AC
(+V ~
to
bO+V~
Auxiliary
Voltagez
Supply
X. h
mAHV
. +zI (
G
) hP hh hb hG
) hP hh hb hG
connection for
optional bus module
b
XI b
RLoad
b
~ AC
(+V ~
to
bO+V~
Auxiliary
Voltagez
Supply
X. h
connection for
optional bus module
Xbb h
Xbb h
b
RLoad
G
Xhb
Th Lh
Fh
Semiz
conductorz
Fuse
Xhh
Lh Th
G
Xhb
Th Lh
Fh
Semiz
conductorz
Fuse
Xhh
Lh Th
b
Xh h
b
Xbb b
O
Xh h
Master
G . +
b
I
Master
G . +
O
I
Xbb +zI bz.
Slave h
XhP h
Xbb b
b
Xbb +zI bz.
Slave h
XhP h
XI b
XI b
Xbb b
Xbb b
G
Connection only
for types starting
from bGPA
PE
G
Slave h
G . +
Slave h
G . +
I
O
G
.
b
G
.
Xbb b
G
I
Xbb b
Xhb
O
Tb Lb
Fh
Semiz
conductorz
Fuse
Xhh
O
Lb Tb
Slave b
G . +
hP hh hb hG
G
Xhb
Tb Lb
I
I
Fh
Semiz
conductorz
Fuse
Xhh
Lb Tb
Slave b
G . +
hP hh hb hG
~ AC
(+V ~
to
bO+V~
Auxiliary
Voltagez
Supply
X. h
O
b
~ AC
(+V ~
to
bO+V~
Auxiliary
Voltagez
Supply
X. h
b
Xh h
b
Xh h
XI b
G
b
G
.
~ AC
(+V ~
to
bO+V~
Auxiliary
Voltagez
Supply
X. h
b
XI b
G
b
G
.
Xhb
TG LG
This line is to connect by
the user
Ex works wiring modifiable
according the application
hP hh hb hG
Fh
Semiz
conductorz
Fuse
Xhh
LG TG
This line is to connect by
the user
~ AC
(+V ~
to
bO+V~
Auxiliary
Voltagez
Supply
X. h
Xhb
TG LG
Fh
Semiz
conductorz
Fuse
Xhh
LG TG
Ex works wiring modifiable
according the application
hP hh hb hG
changes according to chapter +~b needed
Xbb +zI bz.
Slave b
XhP h
b
Xbb +zI bz.
Slave b
XhP h
Ext~ voltage transducer
LG
Setpoint h
Setpoint h
Ext~ current transducer
Ext~ current transducer
Lb
XG h
Pulse inhibit
bGPVH +PxOPHz
Multi IxO G AInV
bGPVH +PxOPHz
Multi IxO G AInV
Sync~ Out x Multi IxO b AOutV
Sync~ In SYTz) x Multi IxO b AInV
Pot~ supply /+V
Analog output h
Shield x Ground
Setpoint b
Analog output b
Sync~ Out x Multi IxO b AOutV
Sync~ In SYTz) x Multi IxO b AInV
Pot~ supply /+V
Analog output h
Shield x Ground
Setpoint b
Analog output b
Analog output G
Multi IxO h AInxOutV
Ext~ voltage transducer
Analog output G
Multi IxO h AInxOutV
Ext~ voltage transducer
Connection only
for types starting
from bGPA
ϑ
Connection only
for types starting
from bGPA
ϑ
Connection only
for types starting
from bGPA
ϑ
Ext~ current transducer
Ext~ current transducer
Ext~ current transducer
Ext~ current transducer
bGPVH +PxOPHz
bGPVH +PxOPHz
Ext~ voltage transducer
Ext~ voltage transducer
ϑ
Connection only
for types starting
from bGPA
ϑ
Ext~ current transducer
Ext~ current transducer
Ext~ current transducer
Ext~ current transducer
bGPVH +PxOPHz
bGPVH +PxOPHz
FIG. 3 C
ONNECTION DIAGRAM Thyro-AX 3A WITH LOAD IN DELTA
OR STAR CONNECTION WITHOUT N
Connection only
for types starting
from bGPA
G
ϑ
b
Ext~ voltage transducer
XG h
Ext~ current transducer
Ext~ current transducer
Lh
28
29
30
31
ccccc
c
ccc
cc
XbG
T. L.
bh bb bG b.
Xbb
G
.
+
~
~ AC
)Oc
to
GIOV~
Auxiliary
Voltage~
Supply
X+ b
X( G
.
c
cc
cG.hA
When changing the load connection is has to be adjusted via parameters. This setting can be done by touch display, Thyro-Tool AX software or acyclic communication of a bus protocol.
cG
. + O
XbG
I
TG LG
.
XGG G
(
I
cb
. + O
(
I
Master
. + O
XGG G
U
% Output
mAzV
c
cc
Y bh bb bG b.
+ O~( )
.
G
XGG b
SP
ReadSet
Code
Settings
LoadConf
AO 2
AO 3
open D
Y +N
Hardware
Operating
Regulator
Y
D
Change Val?
Y
OK
OK
OK
Yes
ESC
ESC
ESC
No
Y bh bb bG b.
)
(
.
FIG. 5 C
ONNECTION DIAGRAM Thyro-AX 3A WITH LOAD IN OPEN
DELTA CONNECTION
OxxbhcΩ
OxxbhcΩ
I
O
+
.
G
cc
Menu
ActVal
Events
Settings
Thyro-Tool AX
Load configuration can be found under the same parameter name
(symbol: LoadConf). The modification has to be saved in the unit for
permanent usage.
XG b
mAzV
mAzV
Y bh bb bG b.
)
(
.
G
XG b
Kb
Signalling~
relay
Master
+
O
I
G
Xbh b
PE
)OccGIOV~
N
PE
L.
LG
Lb
cb
c
G
7.1 %
Menu
G
Xb b
GcP
slow
acting
F
SyncxccPccPcGcVOut,
Syncxcc~YcPccPcGcVIn,
PotxccHOV
ccb
cPc
cG
ccG
X. b
117.6 V
.
XbG
Tb Lb
Fb
Semi~
conductor~
Fuse
Xbh b
.
+
Xbb
Lb Tb
G.hVzcOhPIhHz
cPc.cVIn,
G
~
~ AC
)Oc
to
GIOV~
Auxiliary
Voltage~
Supply
.
c
cc
cG.hA
X( G
ϑ
RLoad
cc.
cPcbcVInPOut,
Extxcc
X+ b
Extxcc
Extxcc
G
cb
Xb b
G
XGG O~( G~+
G.hVzcOhPIhHz
GcP
slow
acting
Touch display
The general functionality of the touch display is explained in chapter 7.
Display and operational elements. If the connection option has not
previously been set up via EasyStart configuration or has not yet been
changed, the modification can be done in accordance to the following
structure:
XGG G
.
c
cc
cG.hA
X( G
ϑ
F
bh bb bG b.
Xbb
.
G
X+ b
Extxcc
+
~
~ AC
)Oc
to
GIOV~
Auxiliary
Voltage~
Supply
Extxcc
Extxcc
LG TG
Fb
Semi~
conductor~
Fuse
(
Xbh b
G
cG
Xb b
G
XGG O~( G~+
G.hVzcOhPIhHz
ccccOxGc
For load connection if applicable the wiring has to be adjusted for
terminals X1 and X10. This depends on the connection option and has
to be done in accordance to the respective connection diagram, see
chapter 5.1.7 Connection diagrams.
- Star or delta connection without N: Factory setting, no changes
necessary
- Star connection with N: Changes of wiring of X1 and X10 necessary
- Open delta connection: Changes of wiring of X1 and X10 necessary
ϑ
GcP
slow
acting
Extxcc
F
Extxcc
Extxcc
L. T.
Fb
Semi~
conductor~
Fuse
5.2 LOAD CONFIGURATION
Settings -> Hardware -> LoadConf -> S
tar connection with N (only
Thyro-AX 3A version)
Star or delta connection without
N (factory setting)
Open delta connection
32
33
5.3 IP20 PROTECTION
blind cover
DANGER
Energized parts.
The device shall immediately be disconnected from the power supply
before installation.
The Thyro-AX is designed according to IP20 protection code. To ensure
protection during operation, the correct mounting is necessary of the
added protection devices at each electric connection. In the following
pictures the mounting of the protection devices is shown, this handling
also applies to 2- or 3- phase units of Thyro-AX.
Devices of 45A/60 A/100A :
For non-used connections:
• The blind cover for non-used connections has to be inserted into the
plug-in edge at the front top of the device
• The back part of the blind cover has to be pressed into the device
cover until it snaps into place
For used connections (cable is connected):
• The protection cover has to be placed with its plug-in edge in the
direction of the device and be placed at the cable with its semicircle
gap
• Push the whole backplane over the sideways rails towards the cover
• Protection cover has to be hooked with its plug-in edge into the front
hole
• Press the back part of the cover into the device cover until it snaps
into place
protection cover
backplate of
protection cover
NOTE
In the case of both connection from top or from bottom are used at the
same time, both backplanes of protection covers (see dotted line in the
figure) have not to be mounted.
For devices of 100A please consider additionally that the rear backplate
of protection cover (see dotted line in the figure) has always not to be
mounted due to the close-by fuse cover. This is only the case when the
device is connected from below.
34
35
Devices of 130A/170A/240A/280A/350A :
For non-used connections:
• The blind cover for non-used connections has to be inserted into the
plug-in edge of the device
For used connections (cable is connected):
• The protection covers have to be mounted according to the direction
arrows in the figure.
• If the customer used connections are wider than the standard gaps
used for these protection covers, then the cover have to be adjusted
by the customer in accordance to the given gaps.
In Detail:
Devices 495A/650A:
For non-used connections:
• The blind cover for non-used connections has to be inserted into the
plug-in edge of the device
For used connections (cable is connected):
• The protection covers have to be mounted according to the direction
arrows in the figure.
• If the customer used connections are wider than the standard gaps
used for these protection covers, then the cover have to be adjusted
by the customer in accordance to the given gaps.
36
37
For devices 1000A/1400A/1500A:
Before connecting the device all coverages (above and / or below as
well as in the front) have to be removed.
The connections coming from the customer side have to be connected
to the copper bars of the device. Afterwards the according parts have
to be removed with a side cutter so that the area around the copper
bars to free for connection. Please be consider that an adequate IP20
protection can only exist when the area around the copper bars has
only be removed as may be necessary.
Then the according coverages have to be fixed again on the device.
The following pictures illustrate a potential position of the coverages:
38
39
6. DESCRIPTION OF FUNCTIONALITY
6.1.3. SST RAMP IN OPERATING MODE TAKT
So that the Thyro-AX can be fitted to the desired application optimally it is equipped with a
variety of functions.
After switching-on the power supply of the power controller (or after
reset or re-start of control electronics) , the switching-on of load starts
also in operating mode TAKT with Soft-Start ramp.
As soon as there is a set point at the power controller, this ramp
(default setting 120ms or 6 network periods) will be passed through
completely. Afterwards the device operates without ramp.
If Soft-Start time (SST) >= 600ms (30 network periods) is set, the power
controller (after turning on the power supply at the power controller
or after reset or re-start of the control electronics and followed by
connecting a set point) stays as long in SST ramp as the turn on time is
Ts > 600ms.
Afterwards the power controller operates without SST ramp, as before, even when Ts should be < 600ms. Background is the usage of a
transformer which can be adjusted perfectly to TAKT operation by the
NOTE
OPTIMAL ADAPTATION OF THE Thyro-AX TO THE LOAD
With the selection of the operating and control mode the Thyro-AX can
be optimally adapted to the load.
NOTE
INDICATED TIMES
The times indicated in the following (duration), e.g. T0 or SST are given
as the number of full waves. In this way the exact times for the frequency
actually used can be indicated.
settings and performance of SST ramp.
6.1 OPERATING MODES
6.1.4 QUICK TAKT MODE QTM (ONLY THYRO-AX 1A)
For optimal adaptation to different applications and manufacturing
procedures or varying electrical loads the appropriate operating mode
is selected by the user.
Depending on the defined setpoint network half waves are switched.
Quick takt mode is a quick operating mode which offers a higher
dynamic than TAKT through its functioning in half wave switch principle.
QTM is suitable for ohmic loads. Continuous current elements are
avoided through the cycle duration. The quick cycle control is particularly suited to infra-red projectors as an alternative to phase angle
firing. When using multiple controllers there is the option of keeping
feedback to mains minimal through synchronization.
6.1.1 FULL WAVE MODE TAKT
The mains voltage is switched periodically depending on the defined
setpoint. In this operating mode almost no harmonics of the mains
frequency occurs. Whole multiples of network periods are always switched, which avoids continuous current elements. The full wave mode is
particularly suited to loads with heat inertia. Nevertheless, any occurring feedback to mains (e.g. flickering) can be reduced to a negligible
amount with the aid of mains load optimization (see chapter Mains load
optimization).
6.1.2 PHASE ANGLE FIRING VAR (ONLY THYRO-AX 1A
AND 3A)
Depending on the defined setpoint the sinus wave of the mains voltage
is shifted with a larger or smaller trigger delay angle α. This operating
mode is characterized by its high control dynamics. In the case of phase
angle firing, harmonics of the mains voltage occur. These can be minimized or considerably reduced by using various circuit types.
6.1.5 SWITCH MODE SWITCH
Depending on the defined setpoint whole network periods are always
switched. Then a signal can be used as control input for switch mode
operation. This means that on-off control can be realized. The feedback
to mains is very slight in this functionality. The switch mode is suitable
for ohmic load and transformer load.
6.2 SETPOINT PROCESSING
The Thyro-AX power controller has four setpoint inputs. All setpoint
inputs are electrically isolated from the mains. For the analog setpoints
1 and 2 individual control characteristics can be configured via the
parameters control begin and control end.
40
41
All setpoints are added up taking into consideration any preceding
modifying symbols. The prerequisite for the influence of a setpoint on
the overall setpoint is that it is approved through the setpoint enable
register.
• setpoint 1 analog signal: (X2.4, X2.3 ground) 0-20 mA as default
settings
• setpoint 2 analog signal: (X2.11, X2.3 ground) 0-5 V as default
settings
• setpoint 3 digital signal: setpoint from higher-level system such as a
PC with USB or via the optional bus interface.
• setpoint 4 digital signal: setpoint from digital potentiometer of the
control panel
The setpoint inputs 1 and 2 are two electrically identical analog inputs
for current or voltage signals with a downstream A/D transformer
(resolution 0.025% of end value). The following signal ranges can be
configured using the touch display, Thyro-Tool AX and bus:
0(4) - 20 mA (Ri = circa 250 Ω) maximum 24 mA
0 - 5 V (Ri = circa 8,8 kΩ) maximum 12 V
0 - 10 V (Ri = circa 5 kΩ) maximum 12 V
The setpoint signal can be adjusted by the user to the procedure controller or automation system.
To do this the start and end points of the control characteristics are
altered. All COTS signals can be used.
If the power controller finds itself in a limitation (Umax, Imax, Pmax) this is
shown on the display (see chapter Events).
Set point
Set point configuration local
Set point 1
analog signal
Set point 2
analog signal
Set point 3
bus interface
Set point 4
digital pot.
Set point configuration remote
(or alternative)
Set point 1
Effective
total set
point value
analog signal
Set point 2
analog signal
Set point 3
bus interface
Set point 4
digital pot.
FIG. 6 SET POINT INPUTS AND EFFECTIVE SET POINT
CONFIGURE OVERALL SETPOINTS
Two configurations for the overall setpoint are possible which each
allow optional combinations of setpoints. In this way an alternative
configuration can be selected quickly by connecting X22.1 to ground.
This allows a manual/automatic switching to be realized
42
43
The values of the default settings are:
• setpoint configuration 1 (no ground to terminal X22.1)
o analog signal 1
o analog signal 2
o digital signal from digital potentiometer
• setpoint configuration 2 (alternative - ground to terminal X22.1)
o digital signal from USB or bus interface
CONTROL CHARACTERISTICS AND CONTROL VARIABLE
The control variable influencing the load is proportional to the effective
setpoint in the case of control modes U, I, P. In control modes U2, I2,
the control variable influencing the load is a square of the effective
setpoint.
U-load / set point
INPUTS FOR SWITCH MODE SWITCH
6.3 CONTROL MODES
U2-control
U-control
U-load [V]
For the switch mode SWITCH it is possible to switch via a 24 V signal
(5-24 V) as a digital signal to terminal X2.7 (Sync. In Digital In) or via
the setpoint on the basis of a threshold. A digital switching signal or an
overall setpoint from 50% causes a switching on, below this a switching
off.
Thyro-AX provides various types of control. The control has an influence
on the size of the output of the power controller. Before commissioning
the power controller and selection of a control mode the mode of functionality and effect on the application should be known.
CONTROL MODES ...H RLP2
Control mode Control variable
Output voltage
U, U2
I, I2 Output current
P
Effective power
Set point [%]
Load voltage U, Ueff
Load voltage U2, Ueff2
I-load / set point
I2-control
Mains voltage variations and load alterations are compensated directly
and, as a result, quickly by bypassing the inert temperature regulation
circuit (secondary control).
I-load [A]
I-control
Set point [%]
Load current I, Ieff
Load current I2, Ieff2
44
45
SECONDARY MODE
OF CONTROL
P-Load / set point
END VALUE OF LIMITATIONS
THE CONTROLLER
UUeff maxIeff max Pmax
U2Ueff maxIeff max Pmax
P-control
Output power [kW]
IIeff maxUeff max Pmax
I2Ieff maxUeff max Pmax
PPmaxIeff max Ueff max
TAB. 3 EFFECTIVE LIMITATIONS
Besides this the Thyro-AX 1A/3A ...H RLP2 is equipped with a peak
current limitation (î = 3 x INom) in phase angle.
6.5 PULSE INHIBITION
Set point [%]
P output power
If the load resistance changes e.g. through the influence of temperature, ageing or load interruption, the variables influencing the load
change.
ONTROL
C
MODE
U
LOAD RESISTANCE GETS SMALLER
PULoad
ILoad
LOAD RESISTANCE
GETS LARGER
PULoadILoad
larger=larger
smaller=smaller
U2
larger=larger
smaller=smaller
smallersmaller
=
larger larger
=
smallersmaller
=
larger larger
=
I
I2
P=smaller larger
=
larger smaller
The pulse inhibition (terminals X2.1 – X2.2) is activated by opening
the pulse inhibition bridge, which means that current no longer flows.
When the pulse inhibition is activated the touch display turns red and
in the data logger “Pulse on” is listed. After switching on or after pulse
inhibition the first Takt pulse (in TAKT operation) runs through with
the soft start function. This is important for transformer load if it was
switched off in an undefined way (remanence). In the case of the
Thyro-AX 2A or Thyro-AX 3A the pulse inhibition is only wired to the
master (L1, left).
6.6 CURRENT AND VOLTAGE TRANSFORMER
The power controller has a current and voltage transformer on the load
side per power unit which is internally wired. In addition each controller
also has an external current and voltage transformer terminal which
can be used via internal link plugs as an alternative to the internally
built-in parts. This can increase the measurement accuracy in the case
of very small voltages. For details on how to convert over please use
the contact information indicated in chapter 4.
TAB. 2 EFFECTS IN THE CASE OF LOAD RESISTANCE CHANGE
6.4 LIMITATIONS
In addition to the configured control mode the following variables can
be limited:
• voltage limitation (U)
• current limitation (I)
• power limitation (P)
External current and/or voltage transformer are to be connected inphase, see connection diagram:
46
47
Netz / Last
Netz / Last
Mains/Load
X22.10
X22.10
Uext
Uext
X22.11
X22.11
N
N
Netz
Mains
Netz
K
K
Iext
Iext
k
k
of the device impossible in general switch the pulse inhibition or the fault
signaling relay K1.
The output value of the voltage
transformer is 10V~ (at rated voltage)
and the output value of the current
transformer is 1V~ (at rated current).
The corresponding load resistor has to
be connected externally as well.
X22.12
X22.12
6.8.1 OVERVIEW
The following table indicates the various messages (events) and their
specific classification of default settings (X).
DESCRIPTION
OF FAULT
THYRO-TOOL AX
MESSAGE
MESSAGE ON
DISPLAY
DISPLAY
RELAY** PULSE INHIBIT
LIGHTING ROT
DATA
LOGGER
NETWORK IST NOT OK
(SYNC ERROR)
SYNC ERROR
SYNC ERROR
X
X
X*
X
HARDWARE ERROR
HARDWARE FAULT
HW FAULT
X
X
X*
X
MINIMUM FREQUENCY
FREQUENCY TO LOW
FMIN
X
X
X*
X
MAXIMUM FREQUENCY
FREQUENCY TO HIGH
FMAX
X
X
X*
X
6.7 DISPLAY VIA ANALOG OUTPUT
VALID FREQUENCY
TOLERANCE
FREQUENCY
FTOLERANCE
TOLERANCE EXCEEDED
X
X
X*
X
The following variables are given at the analog output (e.g. when connecting an external measurement instrument):
• load current (highest phase current from L1, L2, L3)
• load voltage (highest conductor voltage)
• effective power (overall power) (only in the case of ...H RLP2)
• additional variables (can be selected via PC/Bus, e.g. mains voltage,
setpoint etc.)
The variable to be given at the analog output can be configured by the
user (see chapter control mode/analog output).
NO ROTATING FIELD/
NO ROTATING FIELD
LEFT ROTATING FIELD (FOR AX)
NO ROTFIELD
X
X
X*
X
PHASE L1 IS MISSING
PHASE L1 MISSING
NO PHASE1
X
X
X*
X
PHASE L2 IS MISSING
PHASE L2 MISSING
NO PHASE2
X
X
X*
X
PHASE L3 IS MISSING
PHASE L3 MISSING
NO PHASE3
X
X
X*
X
SETPOINT FAILURE
(SETPOINT < 4 mA)
SETPOINT < 4 mASETPOINT X
(OPEN LOOP)
XX
X
NO SUPPLY VOLTAGE
NO SUPPLY VOLTAGE
NO POWER
X
X
X*
X
CONNECTION OF POWER UNITS
POWER UNIT
DISCONNECTED
NOCONNPART
X
X
X*
X
FAILURE OF TEMPERATURE
SENSOR
TEMPERATURE
PROBE DEFECT
TEMPSENS
X
X
X
X
FUSE FAILURE
OPEN FUSE
L
L
Load
Last
Last
l
l
X22.13
X22.13
DEFAULT SETTINGS
ANALOG OUTPUT
OUTPUT VARIABLE
Analog output 1
Analog output 2
Analog output 3
load voltage
load current
power on the load
6.8 FAULT, STATUS AND MONITORING MESSAGES
The Thyro-AX has internal fault, status and user-defined monitoring messages. Their effects can be configured with the Thyro-Tool AX software.
The reactions on the occurrence of a message( =event) can be determined by the user. As a reaction, the inhibition of the load current (pulse
inhibition), as well as the display at the fault signaling relay K1 and the
color of the display lights (red) can be configured as well as the data logger and the multi-I/O outputs (s. chapter 6.8.1). Besides this the mode of
operation (open or closed circuit principle) can be configured at the fault
signaling relay K1. Fundamental fault messages which make the operation
FUSE
X
X
X*
X
THYRISTOR SHORT CIRCUIT
THYRISTOR SHORT
CIRCUIT
THYRISTOR
X
X
X*
X
EEPROM ERROR
MEMORY ERROR
EEPROM
X
X
X*
I2C ERROR
I2C ERROR
I2C
X
ETHERNET ERROR
ETHERNET ERROR
ETH
USB ERROR
USB ERROR
USB
FIRMWARE ERROR
FIRMWARE ERROR
FIRMWARE
X
POWER UNIT IS TOO SMALL
FOR TYPE
POWER UNIT
INCOMPATIBLE
INCOMPPART
X
U-MEASURING RANGE
IS EXCEEDED
U MEASURING
RANGE EXCEEDED
U RANGE
X
X
U-MEASURING RANGE
IS EXCEEDED
I MEASURING
RANGE EXCEEDED
I RANGE
X
X
NEGATIVE POWER
NEGATIVE POWER
NEG POWER
X
X
LCD ERROR
LCD ERROR
LCD
X
PARAMETER ERROR
PARAMETER ERROR
PARAMETER
X
X
* = cannot be deactivated ** = default setting of fault signaling relay K1: closed circuit principle
TAB. 4 ERROR
X
X*
X
X
X
X*
X
48
49
DESCRIPTION
OF STATUS
THYRO-TOOL AX
MESSAGE
MESSAGE
ON DISPLAY
PULSES ARE SWITCHED ON
IMPULSE ON
PULSE ON
PULSE OFF AT
TERMINAL X2.1-X2.2
PULSE SWITCH OFF
TERMINAL
PULOFFT
PULSE OF AT
HARDWARE (ERROR)
PULSE SWITCH OFF
HARDWARE ERROR
PULOFFHW
PULSE OF AT SOFTWARE
PULSE SWITCH OFF
(CONFIGURABLE)EVENT
PULOFFEV
DISPLAY
RELAY** PULSE INHIBIT
LIGHTING RED
X
X
X
THYRO-TOOL AX
MESSAGE
MESSAGE
ON DISPLAY
-
UMAINS MIN
U MAIN < MINIMUM
UN MIN
X
-
UMAINS MAX
U MAIN > MAXIMUM
UN MAX
X
ULOAD MIN
U < MINIMUM
UL MIN
X
ULOAD MAX
U > MAXIMUM
UL MAX
X
ILOAD MIN
I < MINIMUM
IL MIN
X
ILOAD MAX
I > MAXIMUM
IL MAX
X
PLOAD MIN
P < MINIMUM
PL MIN
X
PLOAD MAX
P > MAXIMUM
PL MAX
X
RLOAD MIN
R < MINIMUM
RL MIN
X
RLOAD MAX
R > MAXIMUM
RL MAX
X
X
IPEAK MAX
I PEAK > MAXIMUM
I_PEAK MAX
X
-
X
X
PULSE OF EXTERNAL
PULSE SWITCH OFF
EXTERN
PULOFFEX
LEFT ROTATING FIELD
(MESSAGE ONLY)
LEFT ROTATING FIELD
LEFTROTF
U LIMIT
U LIMIT
U LIMIT
X
I LIMIT
I LIMIT
I LIMIT
X
P LIMIT
P LIMIT
P LIMIT
X
IPEAK LIMIT
I PEAK LIMIT
IPEAKLIMIT
X
ALPHA IS RESTRICTED
ALPHA RESTRICTED
ALPHA
TS IS RESTRICTED
SWITCH ON TIME
RESTRICTED
X
DESCRIPTION OF MONITORING
-
DATA
LOGGER
X
-
X
TS
MAXIMUM CONTROLLER
OUTPUT IS REACHED
MAXIMUM OUTPUT
MAXCONTROL
REACHED
SETPOINT OF BUSMODULE
IS ACTIVE
BUSMODULE
BUS SETP
SETPOINT ACTIVE
BUSMODULE IS CONNECTED
BUSMODULE
BUS CONN
CONNECTED
CLOCK IST NOT SET
CLOCK NOT SET
NO CLOCK
POWER UNITS ARE HIGHER
THAN TYPE
POWER UNIT
DIFFERENT
DIFF PPART
POWER CONTROLLER IS OK
POWER CONTROLLER
OK
THYRO OK
* = cannot be deactivated
** = default setting of fault signaling relay K1: closed circuit principle
TAB. 5 STATUS
X
-
DISPLAY
RELAY** PULSE INHIBIT
LIGHTING RED
X
MAX. TEMP. OF HEAT SINK
TEMPERATURE UNIT > T_HEAT MAX
MAXIMUM
X
X
DATA
LOGGER
X
* = cannot be deactivated
** = default setting of fault signaling relay K1: closed circuit principle
TAB. 6 MONITORING
X
The events, which are captured by the Thyro-AX, are shown on the
touch display in abbreviated form in a list. They correspond with the full
forms in their meaning and can be discerned using the table above.
6.8.2 FAULT SIGNALING RELAY K1
NOTE
DEFAULT SETTING
The function explained here is described in its default setting.
This setting can be altered with the control panel, with a bus module,
or with the Thyro-Tool AX.
FIG. 7 C
ONTACT
ASSIGNMENT
FAULT
SIGNALING
RELAY K1
50
51
The fault signaling relay K1 is fitted with a changeover. Messages which
lead to the switching of the fault signaling relay can be configured with
the control panel, with a bus module, or with the Thyro-Tool AX. With
the default setting the fault signaling relay K1 works in accordance with
the closed circuit principle.
In the case of the following errors the fault signaling relay de-energizes
and the power controller switches off:
• SYNC error
• internal error
• undervoltage in mains
• master/slave error
• error rotating field/phase
In the case of the following errors the fault signaling relay drops out,
the power controller continues to run and a notification is sent (touch
display):
• excess temperature
• undercurrent in the load circuit
6.9 MONITORING
Power controller and load circuit are monitored for errors. Messages
are sent via the touch display, via a bus, or through the fault signaling
relay K1 (see chapter Fault signaling relay K1).
The feature of monitoring (e.g. voltage or temperature) can be deactivated by Thyro-Tool AX software. In this case the adjusted limits will be
disregarded and no message will be shown.
6.9.1 MONITORING THE MAINS VOLTAGE
NOTE
LIMITS OF THE VOLTAGE MONITORING
There are the following limits to the voltage monitoring:
- undervoltage monitoring: < 24 V
- overvoltage monitoring: +10% of the type voltage
This results in absolute limits for the monitoring of the mains voltage.
TYPEUNDERVOLTAGE
LIMIT
230 V
24 V
400 V
24 V
500 V
24 V
600 V
24 V
OVERVOLTAGE
LIMIT
253 V
440 V
550 V
660 V
TAB. 7 LIMITS OF MAINS VOLTAGE MONITORING
In the default setting the pulse inhibition is switched internally if voltage
drops below the undervoltage limit and the fault signaling relay K1 deenergizes (both can be configured).
6.9.2 DEVICE TEMPERATURE MONITORING
NOTE
DEFAULT SETTING
The function explained here is described in its default setting.
This setting can be altered with the control panel, with a bus module, or
with the Thyro-Tool AX.
The Thyro-AX is fitted with temperature monitoring. If the power controller dependent temperature is exceeded an event message is sent
(see chapter Fault and status messages). The pulse inhibition is triggered as configured by default setting, but can be deactivated. Please
note when it is deactivated, in case of fault there is the risk of overheat
or damage of the device.
52
53
7. DISPLAY AND OPERATIONAL ELEMENTS
The parameters of the power controller can be altered via the integrated touch display.
In addition it shows the current values of the Thyro-AX.
CAUTION
Do not use any pointed or sharp-edged objects to operate. They can
damage the surface of the screen.
The touch display is a pressure sensitive screen which can be operated
with the finger. It contains fields which react to light pressure in order
to register buttons being pressed. Depending on the menu displayed
the areas which can be pressed vary in accordance with the contents
displayed. There is a large actual value button and requirement specific
buttons displayed in the lower section of the screen.
After a period of 30 seconds without a button being pressed the screen
display reverts to the actual value view.
If there are more entries available than can be displayed on the screen
a separating line appears when approaching the first or last entry. This
marks the transition from the start to the end of the list and can be
skipped over with the arrow buttons.
7.1 OPERATION OF TOUCH DISPLAY
All supported screens can be operated with a few buttons. The function
of the button depends on the entry displayed. The current selection of
the parameters in the list to be altered is indicated by a frame outline
and can be altered with the OK button. Depending on the parameter
variable a screen follows correspondingly in which alternative values
for the parameter are offered. In the following the symbols and their
various possible depictions are displayed.
,
,
,
: Call up menu.
:- Set the marking of an entry (frame outline) higher or
lower in the list.
- Increase/decrease a numerical value or add/delete a
decimal place.
: Place a character position to left/right.
,
,
,
,
,
,
,
:C
onfirm current selection and
back to last screen.
:R
eject current selection and back
to last screen.
: Increase/decrease digital setpoint 2
The actual value button is described in chapter 7.2.
EXAMPLE OF ENTERING A NUMBER
The example shows the entry of numerical values via the screen buttons
using the setting of Imax, which can occur in the course of EasyStart.
Control End
Control End
Control End
Valid
30.0 V
Valid
30.0 V
Valid
30.0 V
30.0 V
26.0 V
26.7 V
Default
30.0 V
Default
30.0 V
Default
30.0 V
OK
ESC
Use the cursor keys for higher and lower to increase or decrease the
value number. Use the cursor keys for left and right to change the
position of the number to be modificated. Furthermore entries can be
confirmed (by pressing the right cursor key to the end of the row) or
entries can be canceled (by pressing the left cursor key to the end of
the row).
54
55
Actual
button
value
When pressing the actual value button several times the current values
of the Thyro-AX are displayed over several screens. By pressing several
times the screens are alternately displayed and start from the beginning again if pressed again. Depending on the number of phases of
the power controller the actual value view is displayed for all phases.
The screen which appears at the end gives the type information of the
Thyro-AX. The last line on the screen gives the EasyStart identification
The actual value view can also be reached via Menu -> ActVal.
7.2 ACTUAL VALUE VIEW AND ACTUAL VALUE BUTTON
FIG. 8 E
XAMPLES OF AREAS TO BE PRESSED FOR ACTUAL VALUE
BUTTON
Start
Start
7.3 MESSAGE OVERVIEW AND ACKNOWLEDGMENT
Events
!"
RL Max
PulOffEV
Using the actual value button you can leave the current menu at any
time in order to get back to the actual value view. In doing so the
current menu is aborted without being saved permanently in EEPROM,
however, the current alteration remains active and can be saved manually. The actual value button extends over the top half of the screen.
This means that regardless of what is displayed in the upper half of the
screen, the upper area, when pressed, functions as the actual value
button, even when the text is displayed. This enables a quick change
of the display for the values following an alteration of parameters.
During EasyStart changing to the actual value view via the button is not
possible.
OK
If there is a message (event) at which the display turns red,
the lower button (▼ Events ▼ or ▼ Error ▼) can be used
in the message overview to show all active events.
If there is a message to acknowledge among the active
messages (s. table 8), it can be acknowledged by pressing
the OK button.
56
57
DESCRIPTION OF
FAULT
THYRO-TOOL AX
MESSAGE
MESSAGE
ON DISPLAY
ACKNOWLEDGE VIA
LCD DISPLAY
THYRISTOR SHORT CIRCUIT
THYRISTOR SHORT
CIRCUIT
THYRISTOR
X
U-MEASURING RANGE
IS EXCEEDED
U MEASURING
RANGE EXCEEDED
U RANGE
X
I-MEASURING RANGE
IS EXCEEDED
I MEASURING
RANGE EXCEEDED
I RANGE
X
NEGATIVE POWER
NEGATIVE POWER
NEG POWER
X
* = cannot be deactivated
** = default setting of fault signaling relay K1: closed circuit principle
7.4 EASYSTART
In the case of the initial start of the device the managed parameterization EasyStart is called up with the help of which the fundamental parameterization is configured. The following screens are depicted in the
displayed sequences. The ESC button calls up the previous page and as
such allows alterations to be made to settings already inputted.
During the configuration with EasyStart the pulse inhibition is active
and prevents power being emitted at the load side.
DESCRIPTION OF
STATUS
THYRO-TOOL AX
MESSAGE
MESSAGE
ON DISPLAY
ACKNOWLEDGE VIA
LCD DISPLAY
U LIMIT
U LIMIT
U LIMIT
X
I LIMIT
I LIMIT
I LIMIT
X
P LIMIT
P LIMIT
P LIMIT
X
IPEAK LIMIT
I PEAK LIMIT
IPEAKLIMIT
X
ALPHA IS RESTRICTED
ALPHA RESTRICTED
ALPHA
X
TS
X
TS IS RESTRICTED
SWITCH ON TIME
RESTRICTED
MAXIMUM CONTROLLER
OUTPUT IS REACHED
Load factory settings:
The button Yes sets the Thyro-AX back to its default
settings. When pressing the button No, the Thyro-AX
continues EasyStart feature on basis of its current settings.
If EasyStart has been started once, it will request first the
default settings before EasyStart start screen appears.
MAXIMUM OUTPUT
MAXCONTROL
X
REACHED
* = cannot be deactivated
** = default setting of fault signaling relay K1: closed circuit principle
DESCRIPTION OF
MONITORING
THYRO-TOOL AX
MESSAGE
MESSAGE
ON DISPLAY
ACKNOWLEDGE VIA
LCD DISPLAY
UMAINS MIN
U MAIN < MINIMUM
UN MIN
X
UMAINS MAX
U MAIN > MAXIMUM
UN MAX
X
ULOAD MIN
U < MINIMUM
UL MIN
X
ULOAD MAX
U > MAXIMUM
UL MAX
X
ILOAD MIN
I < MINIMUM
IL MIN
X
ILOAD MAX
I > MAXIMUM
IL MAX
X
PLOAD MIN
P < MINIMUM
PL MIN
X
PLOAD MAX
P > MAXIMUM
PL MAX
X
RLOAD MIN
R < MINIMUM
RL MIN
X
RLOAD MAX
R > MAXIMUM
RL MAX
X
IPEAK MAX
I PEAK > MAXIMUM
I_PEAK MAX
X
* = cannot be deactivated
** = default setting of fault signaling relay K1: closed circuit principle
TAB. 8 ACKNOWLEDGMENT
Start screen:
The parameterization of the fundamental values starts
with the button Yes. With No EasyStart is aborted, in
order, for example, to transfer an already saved parameter
file to the device using the Thyro-Tool AX.
Load type:
Here, adjustment to a purely ohmic load or an inductive
load, as occurs in transformers, is possible. As such in
case of a purely ohmic load the power controller can clock
more quickly with the R-Load setting and provides a larger
dynamic on the output side. Configuring a transformer
load with RL-Load causes an angle of the first half wave
(Alpha 1st) each time it switches through and an optimization of the necessary time intervals for the controlled
magnetization of the transformer coils.
58
59
Load
Config
open D
Y +N
Y
D
OK
Load type, dynamic of the load:
This screen appears only if the configuration R-Load has
been selected beforehand.
When configuring a load with heat inertia load with
Slow (T0 = 1 s) the distance between the ignition cycles
increases so that the switch on and switch off duration
lasts longer. In the case of loads which are thermally easy
to influence by external effects, the switching time can
be shortened by configuring Fast (T0 = 0.1 s) to achieve a
more even warm up.
Load type, connection:
Depending on the connection option the adequate entry
has to be chosen from the list. This is important for the
accurate processing and displaying of data. Potential
necessary changes of the connection can be taken from
chapter 5.2. Load configuration.
Control end value:
based control it is Imax in A, and with power based control it
is Pmax in W. In most cases the preconfigured value is sufficient and can be confirmed with the NO button.
ESC
Operating mode:
The operating mode can be set as QTM, Switch, TAKT or
VAR. At this the settings for the load type are taken into
consideration. Notes on operating modes can be taken
from the chapter Operating modes.
Control mode:
The type of control can be set, the selection includes
I, I², U, U², P and Off. Notes on control mode can be
taken from the chapter Control modes.
This screen only appears if the control mode has been
selected beforehand, not if Off is selected.
The control end value is the maximum value for control and
limitation. In the case of full control through the setpoint
this value defines the maximum which can be reached at
the output. The unit is dependent on the control mode. In
the case of voltage based control it is Umax in V, with current
Control end value, value input:
This screen only appears when the YES button has been
selected beforehand.
Similar to the unit from the previous screen an input field
appears for the desired value of the control end value.
After inputting all positions of the value the OK button
appears to confirm.
Control signal:
The correct input variable must be selected corresponding to the signal for the setpoint definition. The selected
value is related to the 1st analog setpoint. The 2nd analog
setpoint remains set to 0-5V in order to enable an offset
through the addition of the setpoints using an external
potentiometer. The 3 analog outputs also receive the
variable of the setpoint selected here. The configuration
for the 2nd analog setpoint can be changed afterwards
in EasyStart. The electrical limits of the levels must be
heeded.
60
61
Confirmation of the settings:
When Yes is pressed all settings are saved in the internal
EEPROM and the pulse inhibition is ended again. Pressing
the No button returns to the last screen.
The characters in brackets each form an initial for the
setting and are used for the EasyStart identification.
!"
Start
!"
Start
7.5 EASYSTART IDENTIFICATION
The EasyStart identification makes the comparison of the configurations
of multiple devices easier. Depending on the settings
selected a series of characters is generated which corres
ponds to the selected settings. If additional settings have
been made outside of those covered by EasyStart, then
a + (plus symbol) is added at the end of the identification
code. This is an indication of additional alterations which
have not been created by EasyStart.
The EasyStart identification can be reached from the main
screen through pressing the actual value button multiple
times. The last line gives the identification code.
7.6 R
ESTRICTION CODES FOR PARAMETERIZATION
AND DIGITAL SETPOINT 2
The access via the touch display can be disabled and enabled for the
following contents:
- parameter alteration: setting menu is displayed or hidden (factory
setting: on)
- digital setpoint 2: DS2 is alterable via buttons following the screens of
the actual value view (factory setting: off).
If the actual value view is not already called up this can be reached via
Menu ➔ ActVal. The screen for the DS2 follows the other actual value
screens and appears last. An alteration of the setpoint is possible with
the button + and -. The factory setting is for this value to be added to
the other setpoints and as such can be used as an offset.
The functions can be hidden or displayed by entering the restriction
code under Menu ➔ Code.
- DS2 restriction code: enable 234, disable 432 (restricted by default
settings).
- Parameter restriction code: enable 345, disable 543 (restricted by
default settings).
7.7 SAVE AND LOAD PARAMETERS WITH USB STICK
Parameters can be transferred from one device to another of the same
type by using a USB stick.
If a USB stick is inserted, a request will appear to set the pulse inhibition or not. Thereby the output power will be 0. This is a requirement for
loading and saving of parameters from or on the USB stick.
After loading, an option will appear to read parameters from the USB
stick (when parameters are available for the specific device type on the
USB stick and the device has not been locked by password protection
(s. chapter 7.6)) or to save the current parameters of Thyro-AX (on the
USB stick while existing parameters of the same device type will be
overwritten).
After reading, it is requested if the parameters should be saved permanently on the device (EEPROM).
The USB overview can be seen when the USB stick is connected via its
according menu item.
On the market there are various USB sticks, which mainly can be
operate without any difficulties with Thyro-AX. Special sticks won‘t be
recognized which provide additional drives or need special drivers.
62
63
7.8 MENU STRUCTURE
MENU
SUBMENU
DEFAULT VALUE
ActVal
Event
Settings
Operating
SST
1A: TAKT, 2A: TAKT,
3A: VAR
UxU
Type values of the
device
50 per
1A: 60° el, 2A: 90° el,
3A: 90° el
6 per
1A: 60° el, 2A: 90° el,
3A: 90° el
6 per
Range
Source
R_Max = (type voltage
* 2)/type current
0-20mA
0-20mA
0-20mA
Average
Regulator
Limit
Takt
(for operating mode
TAKT)
Switch
(for operating mode
SWITCH)
Monitoring
AS 1
AS 2
AO 1
CyclTime
Alpha1st
SST
Alpha1st
Value
ValuePh
OFF
AO 1: U, AO 2: I, AO
3: OFF
ScaleMax
AO 2
(like AO 1)
AO 3
(like AO 1)
REMARKS
Main menu of the current value overview. Also appears
automatically after a period of 30 sec. of not changing
List of all current active messages (events).
OK has the function of acknowledging the relevant message.
Operating mode, operating of thyristors
Current, voltage or power based control.
Maximum value for current, voltage and power.
Soft-start time
Phase angle of the 1st half wave
FIG. 9 CONNECTION TO LOCAL INSTALLED SERVER
Soft-start time
The left side of the window offers an own explorer for open files and
directly connected devices. On the right side, tabs are shown for each
subsection which has been selected by double clicking on it. There are
3 different options to switch between the open windows:
- Double click on explorer (like opening for the first time)
- Select tab
- Drop-down menu (Overview with icons)
R_Max for load monitoring
Signal for analog setpoint 1
Signal for analog setpoint 2
Dimensions for analog output 1
Source for measurment (crucial if Value or ValuePh will be
displayed).
Output of general values (source must be set to general).
Output of phase related values (source must be set to L1, L2,
L3, Min, Max or average).
Full scale value
Overview of all device parameters.
Code
Load EEPROM
Authorization code for parameter changes and digital
setpoint entry at display.
Save the current parameters in EEPROM. This is shown
automatically after a modification, when the menu is
acknowledged.
Load customer parameters from EEPROM.
Load Factory Set.
Load default settings.
Load
TeachIn
Start the load measuring for automatic load failure detection.
EasyStart
Eth.Set.
DHCP/Static
DHCP
Start the quick configuration of the device by basic
parameters.
Method of assigning IP address.
IP Adr
192.168.0.100
Read the assigned IP address or write the static one.
Submask
255.255.255.0
Subnet mask of network.
Gateway
192.168.0.254
Gateway of network.
1. DNS
194.25.2.129
IP of domain name server 1.
2. DNS
130.146.25.194
IP of domain name server 2.
USB Menu
TAB. 9 MENU STRUCTURE THYRO-AX
The software Thyro-Tool AX (hereafter referred to as Tool) is suitable
for parameterization and visualization of connected devices of series
Thyro-AX. Parameter and line charts can be saved. During installation
a server (Windows service: ThyroWindowsService) and client will be
installed, which will be started parallel in the simplest case. There is an
option to access device, which are connected to a computer, by using
remote maintenance on another computer.
Cycle period
Phase angle of the 1st half wave
ReadSet
Save
7.9 THYRO-TOOL AX
Read and write the parameters via USB flash drive.
FIG. 10 SEVERAL OPEN TABS
The field with status messages can be transferred as an external window back and forth for an improved overview. Therefore stretch out the
64
65
button on the left side of the status field.
FIG. 11 MINIMIZE STATUS MESSAGES
FIG. 12 MAXIMIZED STATUS MESSAGES
The order of tabs within the window is flexible. The following order is
possible:
- Next to each other
- Above the other
- Single window with bar (separate for e.g. second screen)
FIG. 13 SEPARATE TAB
To arrange the tabs, keep the mouse button pressed while moving.
Therewith a context menu opens in the middle of the program screen.
If the mouse pointer with the attached tab is released above one of
these windows, the tab positions itself new as seen in the advised preview. Anytime a new positioning is possible.
FIG. 14 PREVIEW OF ARRANGED TABS
The modified overview can be saved permanently as Overview ->
Layout -> save.
66
67
7.9.1 MANAGE DEVICE AND FILES
7.9.2 PARAMETER
Connected devices are shown directly with their virtual COM port
under device port explorer when connected via USB. Thyro-AX devices
within the network list their IP address. Devices can be connected before and after the software start.
Files with ending .thyro can be selected by using the file explorer or the
symbol
from the icon bar. All open files are displayed in the lower
window of the explorer, where the available tabs are for opening. In the
middle window are all .thyro files from the selected folder of the upper
window.
By one double click on parameter entry, the suitable window will open
on the right side of the tool.
FIG. 16 CHANGE NAME OF DEVICE (RE-START IS NECESSARY)
FIG. 15 OPEN THYRO FILES IN FILE EXPLORER
For both cases are the following tabs possible:
- Parameter (to change and adjust the performance)
- Actual values (to display the current available data and messages
(events))
- Data logger (to record messages with time stamp)
- Diagrams (to record data in relation to the time as characteristic lines)
The thyro files include not only parameters but also actual values
measured at the same time and entries of the data logger. Recorded
diagrams are also enclosed and available for review, which will be
loaded from the file.
The features are sorted by groups and are changeable via one click
on each heading on the right side. Each feature has a help text known
as ToolTip, which appears on mouse over the entry. It describes the
features effect and where appropriate default values. Besides the value,
the valid minimal and maximal value is registered as unchangeable for
entries so that the permissible range of each value is known. If a value
is changed and another field is selected, the value will be marked in
red. Marked values are directly active (when the device is connected),
but will be discarded at re-start. The button save
saves changes
permanently to the device storage, so that they are preserved after
restart.
Parameters can be saved to drive as .thyro files by using the button save
as
.
To transfer a local file to the device, the device must be connected and
the relevant .thyro file must be opened (file will appear in the lower
window of the file explorer). A drop-down menu opens with a list of all
open files and connections under tools -> transfer parameter set.
68
69
FIG. 19 FIELD
FIG. 17 TRANSFER OF PARAMETER FILE
In those fields, values are displayed to the second decimal place. For
internal purposes further decimal places can be entered which will be
used for calculation. With mouse-over the precise value of each field
can be seen without any limitations. This is of particular importance to
control parameters.
The source file is under source instance and under target instance is
the described device. By using the button transfer, the file transfer will
start. Subsequently the values have to be saved.
Here is a list of different entry options for parameters:
FIG. 20 CHECKBOX
FIG. 18 DROP-DOWN MENU
Example for entries are summarized in a list and one can be selected
from that list.
This is a list of possible entries. Multiple selection is possible and active
entries are marked in light green. Active entries are grouped in the
overview and non-selected are hidden. These lists are used for selection of messages (events), which should lead to certain actions, or for
selection of set points, which are added in two switchable, customized
configurations and therefore are captured simultaneously in sets.
70
71
8. MAINS LOAD OPTIMIZATION
HAZARDS WHEN CARRYING OUT ADJUSTMENT WORKS
Danger of injury / danger of damage of the device or system
> Adhere to all safety requirements of the chapter Safety.
Mains load optimization provides considerable advantages, e.g. the
reduction of mains load peaks and feedback to mains. Mains load
optimization is possible under the following conditions:
• applications with multiple power controllers
• operating mode TAKT or QTM
The mains load is optimized by cascading the switching on of the individual devices. There are two different processes for doing so.
8.1 INTERNAL MAINS LOAD OPTIMIZATION
(Operating modes QTM (Thyro-AX 1A) and TAKT)
In the operating modes QTM and TAKT a synchronization of 2-12
controllers is possible. The operating mode QTM works in a quick half
wave mode with a pattern of switched and inhibited half waves at an
interval of a fixed time < 1 sec, also known as T0. In order to create a
balance within the network if possible from the start (not only following
T0), the individual controllers synchronize themselves by offsetting by
one network period. In the case of the first of the connected controllers
the Sync. In Digital In X2.7 is bridged to +5V X2.8.
The subsequent controllers receive their pulse to X2.7 from Sync. Out
terminal X2.6 of the previous controller. In the case of the last controller
X2.6 remains free. (connection in series). The illustration 7 has to be
considered when changing the internal mains load optimization.
8.2 S
YNCHRONIZATION WITH dASM MODULE
OR dASM BUS MODULE
If the power controllers operates according to full wave mode (TAKT)
then this can lead to an increased burden on the mains caused by an
unfavorable distribution of the switching on and switching off times. This
then has negative effects as a consequence such as higher power loss,
flicker effects etc. If load elements are used whose resistance increases
over the course of time (ageing) then under certain circumstances a
transformer with increased power output may even need to be used.
All of these negative effects can be avoided or reduced to a minimum
by using the dASM feature of the dASM module or dASM bus module.
Key features:
• Minimized mains load peaks and related mains feedback rates.
• Setpoint and load alterations are not automatically taken into account
for mains load optimization.
• Can also be used with already existing power controllers from Advanced Energy.
For details of connection and operation please refer to the according
dASM module or dASM bus module operating manuals.
8.3 SYNCHRONIZATION WITH THE THYRO-POWER
MANAGER
A similar effect, as with dASM, can be reached by Thyro-Power Manager.
This device has a total of 10 digital outputs at terminals X3 and X4. These
are set up as potential-free optical coupler outputs. In the case of mains
load optimization they are used as synchronization outputs (SYT) for the
connected power controllers or groups of power controllers. All cables
are to be laid shielded, the shield is grounded at the power controller.
(Details can be found in the operating instructions of the Thyro-Power
Manager available separately).
In addition the illustration 8 has to be considered when changing the
wiring diagram of Thyro-Power Manager.
8.4 SOFTWARE SYNCHRONIZATION WITH SOLID
DELAY
Software synchronization is a method of mains load optimization which
can be configured via an optional bus module or via the Thyro-Tool AX.
The software synchronization is configured by inputting a parameter
and causes a delay of the initial ignition following the Thyro-AX being
switched on.
• Requirement is the equality of cycle period T0 to the same value for all
power controllers (recommended: T0 = 50 periods (at 50Hz = 1 sec.).
When configuring with the Thyro-Tool AX:
• Set delay in menu load optimization -> SYNC offset time. Select a
different value for each power controller.
All devices used must then be switched on at the load supply simultaneously, ideally with the aid of a corresponding switch/contactor.
A delay time up to the first switching on is set. The numerical value is
given in periods. As a result the time until the first switching on is diffe-
72
73
rent for each power controller.
This procedure enables a slow switching on of the load, e.g. with a slow
cycle time of 1 sec. The values at an interval of 100 lead to a switching
on phase delayed by a cycle period T0 (group formation). This formation,
for example, allows the activation of an emergency power generator to
be realized.
a
unit 1
FIG. 23 THYRO-POWER MANAGER WIRING DIAGRAM
b
unit 2 offset 250
unit 4 d
mains load
c
offset 500
unit 3
a
d
d
offset 750
c
b
a
d
c
b
d
t
1 full T0 cycle
0
250
500
750
1000 ms
FIG. 21 EXAMPLE OF 4 CONTROLLERS E.G. WITH 100A, LOAD REGULATION CIRCA 30% PARAMETER VALUE OF 4 UNITS: 50, 62, 75, 87
FIG. 22 INTERNAL MAINS LOAD OPTIMIZATION
74
75
9. LOAD MONITORING
Load monitoring is the identification of a breakdown of one or more
resistors connected in parallel series at the time of an error. Therefore
the values of load resistance characteristic have to be in the device.
Those values are set or automatically determined regarding one of the
following approaches:
1. Automatic measurement of nonlinear load characteristic with
TeachIn feature
Via TeachIn feature (menu item TeachIn in main menu) the nonlinear load
characteristic will be measured automatically.
R_Max shows at active load monitoring the arithmetic mean of 10 values
of the resistor characteristics.
At deactivate load monitoring, the value for R_Max is 0.
If R_Max is set (by pressing OK) to a value > 0 on the display, the applicable existing nonlinear load resistor characteristic will be exchanged by
the defined linear resistor of R_Max and load monitoring will be active.
If R_Max is set to 0 on the display, the load monitoring will be deactivated.
Alternatively the TeachIn-function can be used for an automatically
adjustment of the parameter R_Max. TeachIn determines the value for
R_Max by measuring the current and voltage plus a variable addition
(parameter RAutoTol, default value: 10%, parameter RAutoTol can be
changed with Thyro-Tool AX). While TeachIn determines the value for
R_Max, the limits are still in use (I_Max, U_Max and P_Max).
NOTE
NOTE:
During TeachIn feature, the unit will be processed for approx. 20s with
power on to the connected load within the set limits for current, voltage
and power (I_Max, U_Max and P_Max) at default setting.
Thereby the upper and lower tolerance limit of load characteristic (Rmin
and Rmax) are determined and saved each for 10 zones.
The parameter RAutoTol (default setting: 10%) determines the tolerance
requirement during TeachIn feature, the parameter is changeable with
Thyro-Tool AX.
Through TeachIn feature the load monitoring is active.
2. Manual entry or change of nonlinear load characteristic with
Thyro-Tool AX
With Thyro-Tool AX, the 10 values can be set and changed manually in
menu LOAD CHARACTERISTIC for the upper and lower tolerance limits
of load characteristic (Rmax and Rmin).
Furthermore the load monitoring can be activated or deactivated separately for the upper and lower tolerance limit (Rmax, Rmin) in menu
MONITORING of Thyro-Tool AX.
3. Manual entry of linear load resistor value via display
By using menu items SETTINGS -> MONITORING on the display, the
linear load resistor value R_Max can be entered manually.
- Thyro-Tool AX can reactivate the load monitoring together with the
(nonlinear) load characteristic of the device.
- The adjusted monitoring value Rmax should be in the middle between
the resistance value without error and the resistance value at an error.
However, it should not fall below 15%.
- In the tables below attention should be paid to minimal load nominal
current (I-load-nominal / I-type controller) and minimal load nominal
voltage (U-load-nominal / U-type controller). If the values are by far
better as the ones in the tables, a better monitoring could be achieved by more parallel load resistances.
Thyro-AX 1A, Thyro-AX 2A and Thyro-AX 3A (load with separate star
point without neutral conductor)
NUMBER OF
PARALLEL
LOAD RESISTANCES
1
2
3
4
5
ILOAD NOMINAL / ULOAD NOMINAL / RESISTANCE RECOMITYPE CONTROLLER* UTYPE CONTROLLER* CHANGE IN MENDED
FAULT**
SETTINGS
FOR R_MAX
20%
40%
unlimited
RLoad +50%
20%
40%
+100%
RLoad +50%
40%
40%
+50%
RLoad +25%
40%
40%
+33%
RLoad +18%
40%
40%
+25%
RLoad +15%
76
77
Thyro-AX 2A and Thyro-AX 3A (load with common star point without
neutral conductor)
NUMBER OF
PARALLEL
LOAD RESISTANCES
1
2
3
4
ILOAD NOMINAL / ULOAD NOMINAL / RESISTANCE RECOMITYPE CONTROLLER* UTYPE CONTROLLER* CHANGE IN MENDED
FAULT**
SETTINGS
FOR R_MAX
20%
40%
unlimited
RLoad +50%
20%
40%
+67%
RLoad +33%
40%
40%
+33%
RLoad +18%
40%
40%
+22%
RLoad +15%
Thyro-AX 2A and Thyro-AX 3A (load in delta connection)
NUMBER OF
PARALLEL
LOAD RESISTANCES
1
2
3
ILOAD NOMINAL / ULOAD NOMINAL / RESISTANCE RECOMITYPE CONTROLLER* UTYPE CONTROLLER* CHANGE IN MENDED
FAULT**
SETTINGS
FOR R_MAX
20%
40%
+73%
RLoad +36%
20%
40%
+31%
RLoad +16%
60%
40%
+20%
RLoad +15%
Thyro-AX 3A (load with common star point with neutral conductor /
open delta connection)
NUMBER OF
PARALLEL
LOAD RESISTANCES
1
2
3
4
5
ILOAD NOMINAL / ULOAD NOMINAL / RESISTANCE RECOMITYPE CONTROLLER* UTYPE CONTROLLER* CHANGE IN MENDED
FAULT**
SETTINGS
FOR R_MAX
20%
40%
unlimited
RLoad +50%
20%
40%
+100%
RLoad +50%
40%
40%
+50%
RLoad +25%
40%
40%
+33%
RLoad +18%
40%
40%
+25%
RLoad +15%
* min value for 100% setpoint
** partial load fault
TAB. 10 LOAD RESISTANCE
NOTE
- In operating mode VAR, the monitoring is blocked for large control
angles (for load with neutral conductor alpha > 140°, for load without neutral conductor alpha > 117°).
- In the operating mode TAKT the monitoring is blocked for low
setting times (Ts) (by 2-phase devices Ts< 2 periods).
78
79
10. MULTI I/O
FUNCTION INPUT
off
SYT-IN
The multi I/O feature allows flexible classification of digital inputs and
outputs for internal device features or status updates.
This allows the adjustment of Thyro-AX for very specific customer and
application related requirements.
In table 9 are listed the features which can be assigned to the multi I/O
inputs and outputs.
FUNCTION OUTPUT
OFF
Events
SYT-OUT
SYT-Time
SYNC_OUT
REL_OUT
THY_POS
THY_NEG
TS_TIME
T0_TIME
OUTPUT
BUS
REMARKT
No function.
Output of messages (events).
Messages can be set.
Mains load optimization, Output signal for
following unit.
Mains load optimization, Signal at the end of
waiting period.
Determined square wave signal of SYNC
voltage to which the unit synchronizes
50Hz / 60 Hz.
Position of relay.
Logic signal for pos. thyristor.
Logic signal for neg. thyristor.
Logic signal for turn-on time Ts at TAKT.
Logic signal for cycle period T0.
Signal for level of modulation
by flashing frequency.
Signal when the bus module is active.
SWITCH
BUS_SW
OPERATE
Dig_SW2_UP
Dig_SW2_DOWN
REMARK
No function.
Mains load optimization, Input signal of
previous unit.
Input of operating mode SWITCH.
Input for selection of setpoint
(Local / Remote).
Input for switching operating mode between
VAR and TAKT. Prior VAR must be active as
operating mode.
Increase digital setpoint 2 with external
button.
Decrease setpoint 2 with external button.
TAB. 11 MULTI I/O
In table 12 of chapter Technical Data are listed the technical specifications of the five different multi I/O inputs and outputs. Please note that
they are distinguished from each other, e.g. in signal level, in inverting,
in capacity, etc.
Thyro-Tool AX is necessary for changing the default setting of multi I/O
assignment.
80
81
11. DIMENSION DRAWINGS
1
2
3
4
5
6
7
2
8
Thyro-AX
Thyro-AX
22,5
,89
22,5
,89
X10
X10
(X1)
(X1)
X4
X4
28,5
1,12
R 2,
,11 75
7,5
,30
A
A
X3
B
11
,43
C
X3
X3
B
B
C
11 Ethernet
,43
11
,43
11
,43
Ethernet
X4
Thyro-AX
180
7,09
70
2,76
70
2,76
B
C
X10Touch Panel
(X1)
139
5,47
X2 X22
X2 X22
106
4,19
106
4,19
173
6,80
173
6,80
7,5 7,5
,30 ,30
73
2,89
73
2,89
144
5,66
144
5,66
X2 X22
8,5
,33
X2 X22
22,5
,89
12
X1
28,5
1,12
A
view A
view A
Thyro-AX
X3
X1211- L1 T1
11
11
196
7,71
X4
73
2,89
8,5 8,5
,33 ,33
Touch Panel
7,5
,30
Touch Panel
Touch Panel
10
10
180
7,09
28,5
1,12
X1
X10X1
(X1)
9
9
B
22,5
,89
X 11- L1 T1
X 11- L1 T1
70
2,76
8
8
139
5,47
45
1,77
45
1,77
106
4,19
7
7
view A
45
1,77
106
4,19
70
2,76
X1
B
73
2,89
view A
6
6
196
7,71
A
5
5
12
X 11- L1 T1
173
6,80
144
5,66
B
B
45
1,77
4
4
11
front view without USB cover
front view without USB cover
A
A
X22
3
3
10
6
12
R 2R, 2,
,11 7,151 75
2
2
9
8
28,528,5
1,12 1,12
1
1
7
R 2,
,11 75
6
5
11
A
144
5,66
8,5
,33
5
173
6,80
front view without USB cover
4
10
front view without USB cover
A
A
3
9
163
6,40
1
X12
USB
X12
USB
X22
5
2 ,7 1
R ,1
X2
X22
X12
X12
X12
X2
USB
USB
28,5
1,12
Ethernet
Ethernet
28,5
1,12
C
C
163 163
6,406,40
D
180 180
7,097,09
139 139
5,475,47
196 196
7,717,71
C
163
6,40
139
5,47
180
7,09
196
7,71
D
C
C
D
X12- T1 L1
X12- T1 L1
9
144
5,66
123
4,85
M4
for protective earthing
M4
for protective earthing
28,5
1,12
F1
X4
9
10
11
173
6,80
E
E
M4
for protective earthing
106
4,19
73
2,89
22,5
,89
F
F170
2,76
X2 X22
X10
X4
X3
(X1)
7,5
,30
X10
G
view A
X1
B
22,5
,89
E
8
144
5,66
X 11- L1 T1
G
Touch Panel
F
F
F
Thyro-AX
X3
G
B
(X1)
8,5
,33
F1
F1
7
A
73
2,89
70
2,76
F
193
7,59
193
7,59
M4
for protective earthing
45
1,77
E
106
4,19
Observe
Observe
protection
protection
note note
to DINto34.
DIN 34.
F
F
X2 X22
12
R 2,
,11 75
F
front view without front cover
6
193
7,59
73
2,89
73
2,89
11
front view without front cover
front view without
front cover
173
6,80
view A
M4
for protective earthing
10
D
D
5
7,5
,30
193
7,59
4
8,5
,33
123
4,85
E
E
8
3
28,5
1,12
A
A
7
2
front view without USB1234,85 cover
A
6
1
A
5
2,7
R2,7,151
R ,11
E
123
4,85
front view without front cover
22,5
,89
22,5
,89
Observe protection note to DIN 34.
5
D
Observe protection note to DIN 34.
E
73
2,89
4
A
24,724,7
,97 ,97
28,5
1,12
X2
X2
X12- T1 L1
X12- T1 L1
3
73
2,89
5
2,7
R ,11
X22
X22
28,528,5
1,12 1,12
D
D
11
,43
Ethernet
C
163
6,40
180
7,09
139
5,47
196
7,71
H
G
G
Editor
Check
Norm.
X12
USB
1
Free size tolerances
Scale 1:1
1
2
Material :
Blank:
7
Editor
Check
Norm.
1
1
22,5
,89
8
28,5
1,12
24,7
,97
H
H
6
Surfaces
Size: 1
Size: 1
01
Stat.
2
30004128/12
2
Alteration
21.06.
Date
Gal.
Name
Norm.
Date
09.06.2011
22.11.2011
Name
A.Gabel
M.Galmann
4
repl.for:
5
X22
repl.by:
5
5
5
2,7
R ,11
A1
Page
en
1
1
Pa.
D
6
6
Surfaces
Surfaces
01
01
Stat.
Stat.
8
8
30004128/12
30004128/12
Alteration
Alteration
21.06. Gal.
21.06. Name
Gal.
Date
Date Name
Norm.
Norm.
Date
09.06.2011
Date
22.11.2011
09.06.2011
22.11.2011
Name
A.Gabel
Name
M.Galmann
A.Gabel
M.Galmann
Scale 1:1
Scale 1:1 :
Material
8
Material
Blank: :
Blank:
Thyro-AX 1A...- 16 H..2
Thyro-AX 1A...- 16 H..2
9100001010_MB-01
9100001010_MB-01
repl.for:
repl.for:
Origin:
Origin:
A
front view without front cover
F
Observe protection note to DIN 34.
view without front cover
01
Stat.
Scale 1:1
Material :
Blank:
Thyro-AX 1A...- 30 H..2
3
30004128/12
21.06.
Alteration
Date
4
repl.by:
repl.by:
A1
A1
en
en
Page
Page 1
1
1
Pa.
Pa.
M4
F1
5
Norm.
repl.for:
Origin:
73
2,89
6
A1
Page
en
1
1
9100001004_MB-01
Gal.
Name
193
7,59
for protective earthing
Thyro-AX
1A...30A
F
Surfaces
Name
m.galmann
J.Panitz
123
4,85
E
193
7,59
M4
for protective earthing
X12- T1 L1
7
7
123
4,85
Thyro-AX 1A...16A
Editor
Check
Editor
Norm.
Check
Norm.
X2
E
73
2,89
Free size tolerances
Free size tolerances
7
6
D
Thyro-AX 1A...- 16 H..2
4
9100001010_MB-01
4
3
3
Origin:
3
2
Date
25.10.2011
22.11.2011
28,5
1,12
Size: 1
X12
5
Free size tolerances
180
7,09
139
5,47
196
7,71
Size: 1
H
G
163
6,40
C
G
G
repl.by:
Pa.
B
B
B
82
83
Thyro-AX
Touch Panel
Thyro-AX
Touch Panel
C
C
USB
3
4
5
6
7
8
9
10
32
1,26
10
,39
1:1,25
170
6,68
15
,59
8
,31
A
2
3
Ethernet
D
190
7,49
54
2,13
32
1,26
A
A
D
10
,39
(Optional L1)
L1 (M6)
B
X4
E
B
X2
B
X22
L1 (M6)
151
5,94
A
191
7,54
C
260
10,23
193
7,61
178
7,01
260
10,23
C
260
276
10,25
10,86
F
T1
Observe protection note to DIN 34.
C
F
T1 (M6)
Thyro-AX
Touch Panel
T1
Ethernet
193
7,61
USB
F1
155
6,11
Ethernet
G
G
D
D
155
6,10
276
10,86
X2 X22
L1
5,5
,22
Touch Panel
USBF1
37
1,45
X3
E
Thyro-AX
Observe protection note to DIN 34.
X10
L1
112,5
4,43
5,5
,22
T1 (M6)
F
X1
T1
X2 X22
L1
E
D
1:1,25
G
1:1,25
6
15,1
,59
5
view A without protection caps
5,5
,22
A
2
L1
L1 (M6)
Editor
Check
Norm.
X2 X22
3
4
5
7
8
Stat.
Alteration
Date
Name
Norm.
Origin:
F
8
9
10
X2
E
H
A1
Page
en
1
1
9100001013_MB-00
repl.for:
2
3
4
5
6
7
238
9,38
F
212
8,36
170
6,68
front view without USB cover
190
7,49
T1
A
54
2,13
32
1,26
A
142
5,60
F1
T1 (M6)
2
12
1
3
8
X1
X10
X4
A
142
5,60
(Optional L1)
6
(Optional T1)
G
X1
B
48
1,88
front view without LCD-Display cover
1:2
Size: 2
26
1,02
Touch Panel
Free size tolerances
Editor
Check
Norm.
Thyro-AX
view A without protection caps
Date
07.02.2012
09.02.2012
Surfaces
Name
m.galmann
a.satzer
Scale 1:1 (1:2; 1:1,25)
Material :
Blank:
A1
5
7
8
Alteration
Date
Name
Norm.
Origin:
repl.for:
B
view A without protection caps
Page
en
repl.by:
C
1 1 Pa.
2
3
4
5
260
10,23
Stat.
5
X3
1
9100001013_MB-00
6
X4
178
7,01
4
178
7,01
3
276
10,86
2
260
10,25
C
C
1
X10
front view without LCD-Display cover
1:2
H
Thyro-AX 1A...-...H..2
6
USB
Ethernet
D
1:1,25
D
D
1:1,25
15
,59
37
1,45
15,1
,59
37
1,45
X2/X22
X2/X22
T1
X2
E
L1
X22
E
L1 (M6)
112,5
4,43
151
5,94
T1 (M6)
191
7,54
F
F
T1
G
G
155
6,10
155
6,11
F1
Thyro-AX 1A...100A
193
7,61
Thyro-AX 1A...45A, ...60A
Observe protection note to DIN 34.
F
L1
112,5
4,43
A
191
7,54
T1
E
T1
5,5
,22
151
5,94
T1 (M6)
X2 X22
L1
L1
X2 X22
T1
L1
27
1,07
L1 (M6)
6
5
M6
Size: 2
Free size tolerances
Surfaces
Scale 1:1
(1:2; 1:1,25)
T1
170
6,68
G
M6
for protective earthing
8
238
9,38
190
7,49
X3
7
12
212
8,36
F1
X3/X4/X10/X1
6
11
B
H
5
10
F
10
,39
155
6,11
(Optional T1)
G
4
9
8
,31
(Optional L1)
view A without protection caps
A
1
X2 X22
L1
L1 (M6)
,22
Pa.
repl.by:
191
7,54
11
X22
front view without LCD-Display cover
1:2
5,5
E
L1
151
5,94
37
1,45
X2/X22
Thyro-AX 1A...-...H..2
193
7,61
7
Observe protection note to DIN 34.
6
Name
m.galmann
T1
a.satzer
112,5
4,43
6
T1 (M6)
5
Date
07.02.2012
09.02.2012
Scale 1:1 (1:2; 1:1,25)
Material :
Blank:
Surfaces
260
10,25
1
26
1,02
Free size tolerances
193
7,61
E
Size: 2
155
6,10
front view without LCD-Display X2coverX22
1:2
H
37
M6
1,45
for protective earthing
Observe protection note to DIN 34.
48
1,88
15
,59
7
X2/X22
(Optional T1)
A
15,1
,59
X3/X4/X10/X1
X22
6
1:1,25
142
5,60
37
1,45
5
front view without USB cover
X3/X4/X10/X1
X2
4
12
USB
212
8,36
52
2,05
D
1
11
238
9,38
27
1,07
2
front view without USB cover
8
,31
1
Ethernet
260
10,23
276
10,86
178
7,01
260
10,25
260
10,23
276
10,86
C
48
1,88
G
M6
for protective earthing
7
F1
325
12,8
350
13,8
300
11,8
325
12,8
361
14,2
F1
84
85
Ethernet
Ethernet
USB
USB
3
C
4
5
6
Front view without USB cover
Front view without USB cover
129
5,1
75
3,0
A
13
,5
23
,9
L1 Optional
Optional T1
6,5
,3
52
2,0
M8 for earthing
A
view B without protection caps
view A without protection caps
X2 X22
D
L1 Optional
B
30,7
1,2
X10
X1
T1 M8
E
X7
C
7
1
side view
2
view B without protection
caps1
2
22,1
,9
L1 Optional
Optional T1
Front view without USB cover
129
5,1
75
3,0
L1 Optional
X3
3
D
B
5
4
view A without protection caps
19.07.2013 pa
Date
Name Origin:
D
26,1
1,0
30,7
1,2
X10
ThyroAX 1A ...... H ... 2
35
1,4
1
repl.for:
6
283
11,1
X2 X22
A
repl.by: 7
view B without protection caps
L1 Optional
X3
Optional L1
Optional T1
L1 M8 (M10)
X4
X10
T1 Optional
E
X1
A2
en
9100001212_MB012
A
X4
T1 M8
A
6,5
,3
01 earthing
30005755
M8 for
Stat. Alteration
5
E
T1 M8 (M10)
T1 Optional
X1
B
235,5
9,3
249
9,8
235,5
9,3
249
9,8
X7
361
14,2
F1
35
1,4
61
2,4
35
1,4
USB
C
view B without protection caps
Thyro-AX 1A...130A, ...170A
26,1
1,0
22,1
,9
X3
X4
L1 Optional
D
4
5
52
2,0
A
6,5
,3
M8 for earthing
19.07.2013 pa
Date
Name Origin:
ThyroAX 1A ...... H ... 2
35
1,4
9100001212_MB01 2
1
repl.for:
repl.by:
A2
en
Page
1
1 Pa.
Thyro-AX 1A...230A, ...240A, ...280A, ...350A
D
view A without protection caps
view B without protection caps
X2 X22
X3
22,1
,9
3
01 30005755
Stat. Alteration
Name
Date
Editor 05.04.2012 j.panitz
Check 05.04.2012 C.Schaffarra
Norm.
33
1,3
12,5
,5
2
Observe protection note to DIN 34.
1
C
Mass: 7,8 Kg.
Material:
Blank:
325
12,8
350
13,8
F
Ethernet
Scale 1:5 (1:2)
373
14,7
Free size tolerances Surfaces
F
33
1,3
170,4
6,7
176
6,9
170,4
6,7
176
6,9
B
BGR.4
L1 M8 (M10)
Page
1
1 Pa.
side view
23
,9
L1 M8
4
1:5
283
11,1
X2 X22
3
52
2,0
22,1
,9
view A without protection caps
8
Name
Date
Editor 05.04.2012 j.panitz
Check 05.04.2012 C.Schaffarra
Norm.
33
1,3
27,1
1,1
6
35
1,4
Mass: 7,8 Kg.
Material:
Blank:
29,7
1,2
5
61
2,4
Observe protection note to DIN 34.
M8 for earthing
35
1,4
Scale 1:5 (1:2)
Free size tolerances Surfaces
12,5
,5
13
,5
33
1,3
176
6,9
170,4
6,7
176
6,9
C
F
6,5
,3
E
235,5
9,3
249
9,8
235,5
9,3
249
9,8
Ethernet
F
12,5
,5
Observe protection note to DIN 34.
D
E
T1 M8 (M10)
BGR.4
A
L1 M8 (M10)
USB
USB
4
X2 X22
F1
T1 Optional
325
12,8
350
13,8
E
3
D
361
14,2
26,1
1,0
X4
300
11,8
325
12,8
F1
52
2,0
6,5
,3
M8 for earthing
A
view A without protection caps
B
B
C
52
2,0
22,1
,9
X3
L1 M8
Ethernet
4
B
A
Observe protection note to DIN 34.
D
3
1:5
283
11,1
23
,9
A
C
28
side view
B
12,5
,5
129
5,1
75
3,0
71
12,5
,5
C
2
Observe protection note to DIN 34.
1
L1 Optional
61
2,4
3
35
1,4
4
1:5
D
L1
87
D
L1
T1
53
2,087
ohne Frontabdeckung
A
400
418 6x
7
1
8
2
A
25
,984
B
Touch Panel
F2
600
23,622
V2
B
V2
F1
V2
F1
C
V1
G
118,5
4,665
C
V1
T1
T1
Cu 60x10
O 14
,551 Cu 2,361x0,394
T1
C
G
118,5
4,665
C
550
21,654
550
21,654
Draufsicht ThyroAX ...1000 HFR.2
Ethernet
Ethernet
V1
10
für Erdung
O 14
,551 for earthing
Seitenansicht
Thyro
Se
USB
V2
USB
F1
53
2,087
400
9
418 6x
550
21,654
Ethernet
V2
F
Touch Panel
F2
202
7,953
232
9,134
und Abdeckung LP
17 26 17
,669 1,024 ,669
108,5
4,272
V2
6
8
E
B
USB
5
7
22,244
Seitenansicht
ThyroAX 1A ...1400 HFRL.2
ThyroAX 1A ...1500 HFRL.2
25
,984
F2
Observe protection note to DIN 34.
F
Touch Panel
4
12
6
Seitenansicht
ohneThyroAX
LPAbdeckung
Frontansicht
...1000 HFRL.2
212,5
20ohne Abdeckungohne
LP Frontabdeckung
8,366
,787
Seitenansicht ThyroAX ...1000
HFRL.2A
565
ohne vordere Seitenwande
295
11,614
ohne Frontabdeckung
3
11
5
25
,984
E
B
2
10
4
245
9,646
für Erdung
O 14
,551 for earthing
Seitenansicht
ThyroAX ...1000
HFRL.2
ohne vordere Seitenwande
und Abdeckung LP ThyroAX ...1000 HFRL.2
Frontansicht
Draufsicht ThyroAX ...1000
HFR.2
A
1
9
3
25
,984
600
23,622
Frontansicht ThyroAX ...1000 HFRL.2
6
202
7,953
232
9,134
20
,787
5
25
,984
4
Observe protection note to DIN 34.
3
25
,984
2
20
,787
1
T1
9
,354
9
,354
25
,984
86
178
7,008
Cu 40x10
O 14
,551 Cu 1,574x0,394
178
7,008
Cu 40x10
O 14
,551 Cu 1,574x0,394
202
7,953
232
9,134
53
2,087
25
,984
6
7
für Erdung
O 14
,551 for earthing
1
8 25
,984
2
3
9
245
9,646
295
11,614
26 17
1,024 ,669
4
212,5 202
8,366 7,953
232
9,134
400
418 6x
11
5
20
,787
202
7,953
232
89,134
245
9,646
12
6
7
53
2,087
für Erdung
O 14
,551 for earthing
25
,984
400
418 6x
550
21,654
600
23,622
V2
A
G
118,5
4,665
V1
Observe protection note to DIN 34.
F
17 26 17
,669 1,024 ,669
108,5
4,272
F
Observe protection note to DIN 34.
Observe protection note to DIN 34.
F
1
G
2
Date
Stat. Alteration
295
11,614
Draufsicht ThyroAX ...1000
HFR.2
E
Date
Editor
Check
Norm.
für Erdung
O 14
,551 for9earthing
25
,984
Scale 1:2
Free size tolerances Surfaces
H
20
,787
10
Bgr.7F
T1
212,5
8,366
Mass: 0,000 kg
Material:
Blank:
ThyroAX 1A......H...2
Name
j.panitz
ThyroAX 1A......H...2
9100002188_MB00
25
,984
Name Origin:
245
9,646
repl.for:3 295
11,614
B
F
C
G
A1
25
,984
en
repl.by:
20
,787
Seitenansich
ThyroAX 1A ...1400
ThyroAX 1A ...1500
E
Seitenansicht
ThyroAX 1A ...1400 HFRL.2
ThyroAX 1A ...1500 HFRL.2
25
,984
E
9
,354
199,5
7,854
295
11,614
Seitenansicht ohne LPAbdeckung
ohne Abdeckung LP
Seitenansicht
565 HFR.2
ThyroAX 1A ...1400Draufsicht
HFRL.2 ThyroAX ...1000
22,244
ThyroAX 1A ...1500 HFRL.2
und Abdeckung LP
E
25
,984
53
2,087
Seitenansicht ThyroAX ...1000
HFRL.2
ohne vordere Seitenwande
Draufsicht ThyroAX ...1000 HFR.2
ohne Frontabdeckung
T1
25
,984
5
400
418 6x
20
,787
4
AX ...1000 HFRL.2
L1
9
,354
20
,787
3
D
L1
D
H
178
7,008
T1
9
,354
25
,984
L1
D
17 26 17
,669 1,024 ,669
108,5
4,272
178
7,008
Cu 40x10
O 14
,551 Cu 1,574x0,394
D
G
Cu 60x10
O 14
,551 Cu 2,361x0,394
178
7,008
178
7,008
Cu 60x10
O 14
,551 Cu 2,361x0,394
Cu 40x10
O 14
,551 Cu 1,574x0,394
Bgr.7F
178
7,008
H
T1
295
11,614
199,5
7,854
26 17
1,024 ,669
H
Free size tolerances Surfaces
Editor
Check
Norm.
400
418 6x
3
4
25
,984
H
für Erdung
O 14
,551 for earthing
1
2
3
25
,984
245
9,646
4
1
212,5
8,366
Seitenansicht
ThyroAX 1A ...1400 HFRL.2
ThyroAX 1A ...1500 HFRL.2
Thyro-AX 1A...1000A
6
25
,984
295
11,614
.1000 HFR.2
5
7
8
9
2
3
4
1
Name
j.panitz
Date
D
Stat. Alteration
5
2
Date
295
11,614
Mass: 0,000 kg
Material:
Blank:
ThyroAX 1A......H...2
Bgr.7F
295
11,614
ThyroAX 1A......H...2
A1
en
9100002188_MB00
repl.for:3
Name Origin:
6
20
,787
E
Thyro-AX 1A...1400A, ...1500A
F
Scale 1:2
repl.by:
7
199,5
7,854
Page
1
1 Pa.
4
26 17
1,024 ,669
5
8
6
9
Stat. Alteration
89
Thyro-AX
X4
X3
X10
X1
(X1)
X4
X1
Touch Panel
Thyro-AX
7,5
,30
X2 X22
11
,43
163
6,40
162,53
6,40
180
7,09
C
X12
X12
X12
C
Ethernet
X12
USB
X12- T1 L1
7
9
10
193
7,59
E
11
E
2
6,80
Observe protection note to DIN 34.
X10
X4
7,5
,30
M4
for protective earthing
R 2
,11 ,75
22,5
,89
F
X3
F3
F1
(X1)
E
5
6
E
7
B
Touch Panel
view A
F
X1
Thyro-AX
9
10
11
144
5,66
45M4
1,77
for protective earthing
X11- L1 T1
X11- L3 T3
X1
8
173
6,80
A
X2 X22
B
F3
F1
4
side view
front view without
front cover
front view without USB cover
8,5
,33
X2 X22
28,5
1,12
X2 X22
Observe protection note to DIN 34.
F
3
E
90
3,54
106
4,19
F
A
193
7,59
193
7,59
A
144
5,66
70
2,76
123
4,85
123
4,85
12
1
front view without front cover
front view without front cover173
view A
28,5
1,12
28,5
1,12
A
8
E
X12- T3 L3
106
4,19
X2 X22
F
X10
X4
5
2,7
R ,11
X3
F3
(X1)
F1
22,5
,89
F
M4
for protective earthing
70
2,76
8,5
,33
A
73
2,89
28,5
1,12
123
4,85
D
D
X12- T1 L1
73
2,89
22,5
,89
6
X12
X12- T3 L3
Observe protection note to DIN 34.
5
C
X22
X22
X2
X12- T3 L3
73
2,89
4
5
2,7
R ,11
D
28,5
1,12
24,7
,97
28,5
1,12
X12- T1 L1
D
X22
X22
X2
X22
X22
X2
USB
5
2,7
R ,11
D
USB
D
X2 X22
B
Thyro-AX
R 2,
,11 75
X12
139
5,47
196
7,71
Ethernet
180
7,09
139
5,47
196
7,71
C
Ethernet
45
1,77
X3
11
,43
162,53
6,40
180
7,09
139
5,47
196
7,71
C
5
2,7
R ,11
B
B
11
,43
C
22,5
,89
45
1,77
X11- L3 T3
(X1)
B
Thyro-AX
X10
A
view A
180
7,09
8,5
,33
Thyro-AX
X2 X22
A
28,5
1,12
X2 X22
X2 X22
6
139
5,47
X1
X2 X22
Touch Panel
22,5
,89
X11- L1 T1
70
2,76
70
2,76
12
5
90
3,54
106
4,19
106
4,19
X11- L3 T3
11
4
front view without USB cover
144
5,66
A
144
5,66
10
3
7,5
,30
X1
X3
B
Thyro-AX
45
1,77
12
9
2
173
6,80
173
6,80
view A
11
8
1
196
7,71
7,5
,30
28,5
1,12
X4
(X1)
Touch Panel
10
7
7,5
,30
22,5
,89 X11- L1 T1
X1X10
9
6
side view
view A
X11- L3 T3
X1
8
5
90
3,54
X11- L1 T1
B
7
4
A
A
90
3,54
106
4,19
70
2,76
6
3
8,5
,33
173
6,80
144
5,66
12
2
front view without USB cover
front view without USB cover
A
5
11
1
R 2
,11 ,75
4
10
8,5
,33
3
9
28,5
1,12
2
8
28,5
1,12
1
7
R 2
,11 ,75
6
Thyro-AX
11
,43
11
,43
G
G
G
Scale 1:1
Editor
Check
Norm.
Date
10.06.2011
22.11.2011
01
8
2
Stat.
30004128/12
Alteration
22.06.
Date
Gal.
3
Name
Norm.
X12
4
9100001011_MB-01
repl.for:
A1
Page
1
D
5 repl.by:
5
2,7 4
R ,11
USB
en
1
Pa.
5
6
7
X22
7 X22
X12- T1 L1
8
Stat.
30004128/12
Alteration
22.06.
Date
Gal.
Name
Norm.
Origin:
Date
10.06.2011
28.11.2011
Editor
Check
Norm.
Surfaces
Name
m.galmann
j.panitz
01
Stat.
30004128/12
Alteration
22.06.
Date
2
9100001011_MB-01
repl.for:
repl.for:
Origin:Page
A1
4
1
en
1
Pa.
repl.by:
123
4,85
A
193
7,59
E
E
front view without front cover
over
Thyro-AX 2A...30A
F
Observe protection note to DIN 34.
Thyro-AX 2A...16A
M4
for protective earthing
F
F1
F3
A1
Page
en
1
1
9100001005_MB-01
Norm.
73
2,89
193
7,59
Scale 1:1
Material :
Blank:
Thyro-AX 2A...- 30 H..2
Gal.
Name
3
X12- T3 L3
123
4,85
M4
for protective earthing
Free size tolerances
Thyro-AX 2A...- 16 H..2
73
2,89
22,5
,89
180
7,09
139
5,47
Name
A.Gabel
M.Galmann
8
D
X2
Date
10.06.2011
22.11.2011
1
01
6
Size: 1
Scale 1:1
Material :
Blank:
Editor
Check
Norm.
3
Surfaces
X12
Thyro-AX 2A...- 16 H..2
2
Origin:
Free size tolerances
H
Name
A.Gabel
M.Galmann
1
1
Ethernet
Material :
Blank:
H
Size: 1
R 2,
,11 75
Surfaces
28,5
1,12
X12
7
196
7,71
162,53
6,40
139
5,47
196
7,71
180
7,09
Free size tolerances
H
6
C
C
Size: 1
X12
G
G
163
6,40
G
28,5
1,12
24,7
,97
88
Pa.
repl.by:
5
6
45
1,77
X4/X10/X1
B
90
Thyro-AX
91
Thyro-AX
Touch Panel
C
Touch Panel
178
7,01
260
10,25
260
10,23
276
10,86
C
Thyro-AX
Thyro-AX
C
USB
3
4
5
6
7
8
9
10
108
4,25
A
1:1,25
78,6
3,09
190
7,49
15
,59
56
2,20
3
E
X2
USB
X4/X10/X1
78,6
3,09
D
L1
L1 (M6)
X2 X22
X2 X22
L3
L3 (M6)
X1
L1/L3
X10
X4
E
X22
193
7,61
C
C
1:1,25
178
7,01
4
Free size tolerances
37
1,45
Date
20.07.2011
07.02.2012
Editor
Check
Norm.
26
1,02
X2 X22
L1 protection L3
view A without
caps
5
Surfaces
X2 X22
6
(1:2; 1:1,25)
Material :
Blank:
8
15,1
,59
X2/X22
9
10
L1/L3
8
Stat.
113
Alteration
Date4,43Name
9100001014_MB-00
Norm.
Page
1
Pa.
X22
repl.by:
X2
H
1
12
212
8,36
1
T1
169,7
6,68
142
5,60
F3
3
4
5
6
7
F
T3
front view without USB cover
A
4
8
155
6,11
9
10
X4
14
,55
X3
F1
G
X3/X4/X10/X1
48
1,88
Free size tolerances
Surfaces
B
Editor
Check
Norm.
26
1,02
Date
20.07.2011
07.02.2012
Name
m.galmann
a.satzer
view A without protection caps
4
5
6
Touch Panel
178
7,01
3
260
10,25
2
7
Thyro-AX
T1
8
Thyro-AX
A
8
(1:2; 1:1,25)
Material :
Blank:
X1
Stat.
Alteration
Date
Name
Norm.
A1
Page
en
1
1
H
repl.by:
Pa.
X4
B
view A without protection caps
C
4
5
178
7,01
6
7
260
10,25
3
260
10,23
276
10,86
2
D
1:1,25
USB
Ethernet
D
37
1,45
D
1:1,25
X2/X22
L1 (M6)
L1
X2 X22
L3
X2 X22
15,1
,59
T1/T3
L3 (M6)
E
L1/L3
37
1,45
56
2,20
113
4,43
X22
L1 (M6)
X2 X22
L1
X2 X22
L3
5,5
,22
Thyro-AX 2A...100A
T3
M6
for protective earthing
48
1,88
155,7
6,13
F3
193,7
7,63
G
F1
Size: 2
Free size tolerances
Surfaces
Scale 1:1 (1:2; 1:1,25)
Material :
Blank:
G
F
L3
T1
8
9
27
1,07
6,11
Observe protection note to DIN 34.
F
Thyro-AX 2A...45A, ...60A
191
7,54
T3 (M6)
T1 (M6)
A
T3
E
L1/L3
112,5
4,43
150,9
5,94
F
T1
X2/X22
T1/T3
L3 (M6)
X22
L1
X2
T3
E
191
7,54
T1
151
5,94
T3 (M6)
T1 (M6)
M6
for protective ea
5
X3
front view without LCD-Display cover
1:2
1
56
2,20
T3
Thyro-AX 2A...-...H..2
repl.for:
Origin:
X10
C
15
,59
8
9
7
Scale 1:1
9100001014_MB-00
C
1
7
(Optional T1/T3)
Size: 2
M6
for protective earthing
T3 (M6)
12
(Optional L1/L3)
G
X4/X10/X1
front view without LCD-Display cover
1:2
11
170
F36,68
142
5,60
B
H
6
212
8,36
8
,31
X10
L3 (M6)
238
9,38
(Optional T1/T3)
X1
view A without protection caps
5
190
7,49
78,6
3,09
X2 X22
L3
F
(Optional L1/L3)
G
T1 (M6)
3
110,2
4,34
A
193
7,61
F1
2
A
2
X2 X22
L1
L1 (M6)
X22
5,5
front view without LCD-Display cover
,22
1:2
238
9,38
190
7,49
37
1,45
5
E
A1
en
1
E
repl.for:
Origin:
151
5,94
T3 (M6)
11
9
56
2,20
7
Thyro-AX 2A...-...H..2
Observe protection note to DIN 34.
Observe protection note to DIN 34.
F
8
1:1,25
G
T1/T3
L3 (M6)
7
T1 (M6)
Name
m.galmann
a.satzer
Scale 1:1
191
7,54
7
193,7
7,63
155,7
6,13
56
2,20
L1 (M6)
5,5
,22
3
15
,59
M6
for protective earthing
M6
for protective earthing
155,7
6,13
2
X22
F3
F1
193,7
7,63
48
1,88
front view without LCD-Display cover
1:2 X2 X22
T3
D
Size: 2
A
6
T1
USB
EthernetD
1
L3 (M6)
T3 (M6)
T1 (M6)
Thyro-AX
A
155
6,11
G
D
5
Thyro-AX
260
10,23
F
Touch Panel
276
10,86
T3
Observe protection note to DIN 34.
260
10,23
276
10,86
T1
F3
Ethernet
E
X2 X22
L3
5,5
,22
F
USB
H
X2 X22
L1
L1 (M6)
X22
Thyro-AX
C
G
37
1,45
260
10,25
Observe protection note to DIN 34.
X2
Touch Panel
F1
56
2,20
B
191
7,54
Thyro-AX
15,1
,59
X4/X10/X1
B
151
5,94
T3 (M6)
T1 (M6)
7
1:1,25
E
X3
113
4,43
A
F
14
,55
X3/X4/X10/X1
(Optional T1/T3)
T1/T3
5,5
,22
6
110,2
4,34
A
(Optional L1/L3)
X22
B
5
Ethernet
X2/X22
X22
4
front view without USB cover
D
A
142
5,60
37
1,45
8
,31
X3/X4/X10/X1
212
8,36
169,7
6,68
14
,55
2
12
27
1,07
D
11
238
9,38
260
10,23
2
front view without USB cover
8
,31
1
276
10,86
1
Ethernet
G
B
254
10,0
200
7,9
A
1:5
283
11,1
A
L1;L3 Optional
Optional T1;T3
23
,9
92
93
B
F3
325
12,8
350
13,8
F1
B
Ethernet
B
USB
F2
2
361
14,2
C
3
4
5
6
Front view without USB cover
side view
254
10,0
200
7,9
Ethernet
283
11,1
B
Optional T1;T3
5
6
Front view without USB cover
side view
254
10,0
200
7,9
1:5
283
11,1
D
A
12,5
,5
L1;L3 Optional
A
13
,5
D
F1
X1
235,5
9,3
E
D
13
,5
33
1,3
35
1,4
1
3
2
186
7,3
6
7
X2 X22
L3 Optional
2
3
5
29,6
1,2
L3
9100001213_MB01
5
repl.for:
side view
283
11,1
E
T3
T1 M10
6
repl.by:
X4
X10
L1 Optional
X3
Page
1
1 Pa.
Optional T1;T3
X1
3
7
8
X4
X10
T3 Optional
T1 Optional
1:5
X1
Optional L1;L3
A
X7
A
249
9,8
23
,9
19.07.2013 pa.
Date
Name Origin:
X10
X1
X1
T3
T1 M8
L1;L3 Optional
T3 Optional
X10
2
view B without protection caps
L3 Optional
A2
en
61
2,4
35
1,4
B
1:5
X4
X4
Optional T1;T3
430005755
01L1 M10
Stat. Alteration
D
158
6,2
1
ThyroAX 2A ...... H ... 2
254
10,0
200
7,9
35
1,4
Mass: 15,6 Kg.
176
6,9
27,2
1,1
283
11,1
22,1
,9
L3
L1 M8
A
33
1,3
6,5
,3
Free size tolerances Surfaces
Scale 1:5 (1:2)
M8 for earthing
DIN ISO
Material:
2768
m
view A without protection caps
Blank:
Name
Date
Editor 05.04.2012 j.panitz
Check 05.04.2012 c.schaffarra
X2 X22
X2 X22
Norm.
A
35
1,4
4
8
L1 Optionl
X3
side view
BGR.4
23
,9
5
X2 X22
E
35
1,4
Front view without USB cover
4
254
10,0
200
7,9
61
2,4
35
1,4
view B without protection caps
1
view A without protection caps
3
158
6,2
52
2,0
22,1
,9
12,5
,5
E
235,5
9,3
249
9,8
BGR
F
B
F3
Free size tolerances Surfaces
DIN ISO
2768 m
BGR.4
F2
300
11,8
325
12,8
361
14,2
T1 Optionl
33
1,3
35
1,4
158
6,2
t
61
2,4
35
1,4
1
2
3
35
1,4
4
Name
Date
Editor 05.04.2012 j.panitz
Ethernet Check 05.04.2012 c.schaffarra
Norm.
186
7,3
35
1,4
5
USB
19.07.2013 pa.
Date
Name Origin:
33
1,3
Mass: 15,6 Kg.
Material:
Blank:
35
1,4
61
2,4
35
1,4
158
6,2
1
2
3
35
1,4
186
7,3
4
41,2
1,6
01
Stat.
Lufteintritt
air inlet5
ThyroAX 2A ...... H ... 2
A2
en
9100001213_MB01
USB
01 30005755
Stat. Alteration
C
Scale 1:5 (1:2)
325
12,8
350
13,8
F1
F
B
170,4
6,7
176
6,9
B
373
14,7
Front view without USB cover
Observe protection note to DIN 34.
D
2
6,5
,3
M8 for earthing
12,5
,5
Observe protection note to DIN 34.
170,4
6,7
176
6,9
F
C
T1 Optionl
A
235,5
9,3
176
6,9
C
T3
249
9,8
USB
X10
170,4
6,7
T3 Optional
X1
F
52
2,0
X7
Ethernet
X4
249
9,8
27,2
1,1
X10
325
12,8
300
11,8
29,6
1,2
B
X1
T3
T1 M10
X4
X10
E
22,1
,9
L3
T1 M8
USB
C
L1 Optionl
X3
L3 Optional
X4
F3
325
12,8
350
13,8
X2 X22
X2 X22
E
L3
L1 M10
view B without protection caps
view A without protection caps
F2
Ethernet
X2 X22
X2 X22
B
M8 for earthing
L1 M8
F1
M8 for earthing
view A without protection caps
22,1
,9
52
2,0
B
6,5
,3
A
6,5
,3
361
14,2
D
Observe protection note to DIN 34.
23
,9
Optional T1;T3
Option
C
52
2,0
27,1
1,1
A
8
29,7
1,2
B
7
27,1
1,1
4
Observe protection note to DIN 34.
USB
C
3
235,5
9,3
2
170,4
6,7
1
12,5
,5
23
,9
A
29,7
1,2
300
11,8
1
325
12,8
F1
repl.for:
repl.by:
Page
1
1 Pa.
C
6,5
,3
M8 for earthing
D
view B without protection caps
caps
29,6
1,2
12,5
,5
A
6,5
,3
M8 for earthing
view A without protection caps
X2 X22
X2 X22
X1
L1 Optional
X3
22,1
,9
X4
X10
X4
T3 Optional
X10
T1 Optional
X10
E
T3
L3 Optional
L3
L1 M10
T3 Optional
D
Thyro-AX 2A...230A, ...240A, ...280A, ...350A
L1 Optionl
X4
X4
X10
view B without protection caps
D
27,1
1,1
27,2
1,1
L3
52
2,0
29,7
1,2
X3
Thyro-AX 2A...130A,L3 Optional
...170A
22,1
,9
X2 X22
Observe protection note to DIN 34.
13
,5
C
X1
T1 M10
E
T3
X7
X1
X1
E
F6
V2
V6
Ethernet
Ethernet
F1
C
600
23,622
USB
550
21,654
94
F6
F2
V2
F5
F1
C
V5
95
F5
C
V1
V5
118,5
4,665
V1
V6
550
21,654
F2
USB
T1
T1
T5
T5
Cu 40x10
O 14
,551 Cu 40x10 Cu 1,574x0,394
3
4
5
L1
6
T1
L3
7
T3
8
9
10
D
1
11
2
12
D
3
4
5
Seitenansicht ohne LPAbdeckung
25
,984
ohne vordere Seitenwande
und Abdeckung LP
368,5
14,508
398,5
15,689
53
2,087
1
3ohne Abdeckung LP
2
25
,984
für Erdung
O 14
,551 for earthing
Frontansicht ThyroAX ...1000 HFRL.2
245
9,646
295
11,614
4
ohne Frontabdeckung
5
A
25
565
,984
22,244
Frontansicht ThyroAX ...1000 HFRL.2
6
Seitenansicht ThyroAX ...1000 HFRL.2
V2
V6
F1
C
T5
550
21,654
F1
F5
V5
V1
V5
T1
T5
G
G
118,5
4,665
G
F5
C
F
600
23,622
V1
118,5
4,665
Ethernet
C
T1
V6
F6
F2
USB
V5
V1
F
V2
USB
Ethernet
550
21,654
F5
F6
F2
Touch Panel
108,5
4,272
F1
C
B
550
21,654
Ethernet
B
17 26 17
,669 1,024 ,669
V6
ohne Abdeck
565
22,244
E
Touch Panel
600
23,622
F
V2
Observe protection note to DIN 34.
F6
F2
USB
14 für Erdung
O ,551 for earthing
Seitenansicht
ohne LPAbdeck
Draufsicht ThyroAX ...1000 HFR.2
E
B
B
Touch Panel
ohne vordere Seitenwande
und Abdeckung LP
25
,984
Seitenansicht
ThyroAX 1A ...1400 HFRL.2
ThyroAX 1A ...1500 HFRL.2
E
ohne vordere
10 Seitenwande
und Abdeckung LP
9
368,5
14,508
398,5
15,689
25
,984
25
,984
A
8
53
2,087
20
,787
ohne Frontabdeckung
Draufsicht ThyroAX ...1000 HFR.2
7
A
212,5
8,366
7
T3
Seitenansicht ThyroAX ...1000 HFRL.2
Observe protection note to DIN 34.
ohne Frontabdeckung
A
6 L3
T1
20
,787
Seitenansicht ThyroAX ...1000 HFRL.2
20
,787
Frontansicht ThyroAX ...1000 HFRL.2
L1
9
,354
9
,354
25
,984
2
178
7,008
D
1
T1
4
E
Draufsicht ThyroAX
...1000 HFR.2
5
1
6
245
9,646
295
11,614
212,5
8,366
2
7
3
8
20
,787
4
9
ohne vordere Seitenwande
und Abdeckung LP
ohne Frontabdeckung
12
Observe protection note to DIN 34.
Cu 40x10
O 14
,551 Cu 40x10 Cu 1,574x0,394
295
11,614
199,5
7,854
Scale 1:2
4
178
7,008
3
5
6
Editor
Check
Norm.
26 17
1,024 ,669
7
8
D
Stat. Alteration
9
1
25
,984
für Erdung
O 14
,551 for earthing
Draufsicht ThyroAX ...1000 HFR.2
25
,984
245
9,646
295
11,614
Name
j.panitz
25
,984
212,5
8,366
3
4
Seitenansicht
ThyroAX 1A ...1400 HFRL.2
ThyroAX 1A ...1500 HFRL.2
20
,787
ThyroAX 2A......H...2
Date
Name Origin:
1
9100002189_MB00
Cu 60x10
O 14
,551 Cu 60x10 Cu 2,361x0,394
repl.for:
repl.by:
2
3
4
2
Page
1
1 Pa.
5
20
,787
Seitenansicht
ThyroAX 1A ...1400 HFRL.2
ThyroAX 1A ...1500 HFRL.2
E
Thyro-AX 2A...1000A
108,5
4,272
7 26 17
69 1,024 ,669
F
G
Bgr.7F
295
11,614
A1
en
25
,984
212,5
8,366
245
9,646
295
11,614
Cu 60x10
O 14
,551 Cu 60x10 Cu 2,361x0,394
Mass: 0,000 kg
T3
368,5
14,508
398,5
15,689
212,5
8,366
2
Material:
Blank:
ThyroAX 2A......H...2
H
2
repl.by:
Page
1
1 Pa.
G
Free size tolerances Surfaces
H Date
1
repl.for:
A1
en
178
7,008
118,5
4,665
Bgr.7F
L3
1
Name Origin:
25
,984
C
T5
T1
Date
G
H
L1
,984
9100002189_MB00
F
G
V5
T1
für Erdung
O 14
,551 for earthing
9,646
295
11,614
ThyroAX 2A......H...225
108,5
4,272
17 26 17
,669 1,024 ,669
600
23,622
550
21,654
Cu 60x10
O 14
,551 Cu 60x10 Cu 2,361x0,394
,984
E
Mass: 0,000 kg
Material:
Blank:
ThyroAX 2A......H...2
Seitenansicht
ThyroAX 1A ...1400 HFRL.2
ThyroAX 1A ...1500 HFRL.2
25
,984
Observe protection note to DIN 34.
F5
Draufsicht9 25ThyroAX ...1000 HFR.2245Stat. Alteration
8
E
Scale 1:2
B
V6
V1
7
368,5
14,508
398,5
15,689
F
G
F1
368,5
14,508
398,5
15,689
26 17
53 1,024 ,669
2,087
A
F6
V2
Name
j.panitz
Date
Editor
Check
Norm.
14 für Erdung
O ,551
for earthing
Draufsicht ThyroAX ...1000 HFR.2
ohne Abdeckung LP
E
F
F2
H
T3
199,5
7,854
6
11
53
2,087
565
22,244
F
L3
295
11,614
5
10
Seitenansicht
ThyroAX 1A ...1400 HFRL.2
Seitenansicht
ThyroAX 1A ...1500
HFRL.2 ohne LPAbdeckung
Seitenansicht ThyroAX ...1000 HFRL.2
Frontansicht ThyroAX ...1000 HFRL.2
9
,354
25
,984
T1
25
,984
25
,984
Free size tolerances Surfaces
20
,787
L1
für Erdung
O 14
,551 for earthing
Cu 40x10
O 14
,551 Cu 40x10 Cu 1,574x0,394
T3
17 26 17
,669 1,024 ,669
3
L3
Bgr.7F
Observe protection note to DIN 34.
368,5
14,508
398,5
15,689
H
20
,787
25
,984
20
,787
2
T1
9
,354
D
53
2,087
D
L1
T3
108,5
4,272
L3
178
7,008
T1
9
,354
25
,984
L1
178
7,008
D
178
7,008
D
Cu 40x10
O 14
,551 Cu 40x10 Cu 1,574x0,3
Cu 60x10
O 14
,551 Cu 60x10 Cu 2,361x0,394
T5
178
7,008
Cu 40x10
O 14
,551 Cu 40x10 Cu 1,574x0,394
Thyro-AX 2A...1400A, ...1500A
3
295
11,614
6
4
199,5
7,854
7
5
26 17
1,024 ,669
8
6
199,5
7,854
7
9
Stat. Alteration
Date
N
96
97
22,5
,89
X2 X22
X10
X1
X4
8,5 7,5
,33 ,30
28,5
1,12
22
X1
5
2,711
L1 T1
R ,X11-
X3
(X1)
X1
X2 X22
X1
X2 X22
101
6
Thyro-AX
Thyro-AX
Thyro-AX
Touch Panel
22,5
,89
X10
X2 X22
X2(X1)X22
X4
X2 X22
B
Thyro-AX
Thyro-AX
11
,43
X3
22,5
,89
X1
X10
X4
X2 X22
X3
Thyro-AX
X2 X22
Thyro-AX
B
11
,43
163
6,40
C
X2 X22
B
C
180
7,09
196
7,71
139
5,47
180
7,09
196
7,71
139
5,47
C
USB
90
3,54
X11- L3 T3
X1
11
,43
163
6,40
139
5,47
180
7,09
196
7,71
view A
A
X11- L2 T2
70
X1
2,76
Thyro-AX
Thyro-AX
7
12
135
5,31
(X1)
Touch Panel
B
6
11
90
3,54
106
4,19
73 X11- 2L1,75 T1
2,89 R ,11
Touch Panel
C
5
10
A
144
5,66
73
2,89
X1
X2 X22
4
9
6,80
A
70
2,76
3
12
8
side front
view view without
USB cover
173
173
6,80
144
5,66
B
B
11 2
7
106,4
4,19
X11- L3 T3
X11- L2 T2
9
5
view A
A
5,31
90
3,54
X11- L3 T3
X11- L2 T2
8
28,5
1,12
135
5,31
73
2,89 X11- L1 T1
70
X1
2,76
front view without USB cover
view A 135
A
106,4
4,19
7
4
C
C
Ethernet
X12
X12
Ethernet
X12
Ethernet
X12
X12
X12
X12
X12
X12- T1 L1
22,5
,89
X2
X12- T3 L3
73
2,89
4
E
5
X22
X22
X12- T1 L1
6
73
2,89
X12- T3 L3
73
2,89
8
9
X12- T1 L1
123
4,85
A
193
7,59 7
D
E
10
11
X22
X22
X2
X22
X12- T2 L2
A
123
4,85
D
28,5
1,12
D
28,5
1,12
X22
X12- T2 L2
D
28,5
1,12
28,5
1,12
D
24,7
,97
X22
X22
X2
X12
5
2,7
R ,11
USB
USB
D
X12
R 2,
,11 75
R 2,
,11 75
2
180
7,09
144
5,66
6
3
196
7,71
173
6,80
front view without
USB cover
A
12
5
139
5,47
2
R 2
,11 ,75
11
4
1
8,5 7,5
,33 ,30
10
3
163
6,40
9
2
8,5 7,5
,33 ,30
8
1
28,5
1,12
7
28,5
1,12
6
X12- T2 L2
X12- T3 L3
A
123
4,85
193
7,59
12
X22
193
7,59
E
E
1
front view without front cover
front view without USB cover
5
6
A
7
8
front view without front cover
side view
view A
X4
X3
X1
11
,43 Thyro-AX
Touch Panel
B
F5
X1
X1
Thyro-AX
F
X11- L3 T3
B
X2 X22
F
F3
11
173
6,80
F1
X2 X22
22,5
,89
M4
for protective earthing
106
4,19
90
3,54
73
2,89
X2 X22
70
2,76
F5
X10
X4
X3
(X1)
F
Thyro-AX
G
G
E
10
R 2
,11 ,75
X10
X11- L1 T1
F1 F5
135
5,31
M4
for protective earthing
X11- L2 T2
Observe protection note to DIN 34.
F3
9
144
5,66
28,5
1,12
90
3,54
F5
2,7 1
R ,1
8,5 7,5
,33 ,30
(X1)
F1
22,5
,89
M4
for protective earthing
Observe protection note to DIN 34.
X2 X22
F
70
2,76
28,5
1,12
X2 X22
73
2,89
F3
4
A
106,4
4,19
Observe protection note to DIN 34.
F
3
front view without front cover
173
6,80
144
5,66
view A
X2 X22
2
8,5 7,5
,33 ,30
E
11
,43
G
G
G
X12
X12
X12
Editor
Check
Norm.
H
Date
11.06.2011
22.11.2011
Name
A.Gabel
j.panitz
7
1
12
10
61
8
2
Stat.
Alteration
22.06.
3
Date
Name
Norm.
Origin:
4
repl.for:
A1
Page
en
1
Date
11.06.2011
22.11.2011
Editor
Check
X12
X12
Norm.
Surfaces
repl.by:
5
Name
A.Gabel
j.panitz
Scale 1:1
Material :
Blank:
X12
Size:1
01
Pa.
6
7
3
4
D
8
Stat.
30004128/12
Alteration
22.06.
Date
Name
Norm.
repl.for:
Origin:
A1
Page
en
1
Editor
Check
Norm.
1
9100001012_MB-01
Gal.
Free size tolerances
Pa.
1
641
D
73
2,89
X2
123
4,85
X22
X22
X12- T1 L1
5
X12- T2 L2
641
8
Stat.
3 30004128/12
Alteration
22.06.
Date
Gal.
Name
Norm.
4
Origin:
X22
73
2,89
123
4,85
E
193
7,59
er
E
front view without front cover
Thyro-AX 3A...16A
Thyro-AX 3A...30A
M4
for protective earthing
F
F5
protection note to DIN 34.
F
F3
M4
for protective earthing
Name
m.galmann
j.panitz
Scale 1:1
Material :
Blank:
Thyro-AX 3A...- 30 H..2
A1
01
2
7
X12- T3 L3
A
193
7,59
6
28,5
1,12
22,5
,89
2
Date
11.06.2011
28.11.2011
repl.by:
USB
1
Surfaces
Thyro-AX 3A...- 16 H..2
H
1
9100001012_MB-01
Gal.
28,5
1,12
24,7
,97
6
30004128/12
Free size tolerances
Ethernet
Thyro-AX 3A...- 16 H..2
H
01
Size:1
C
163
6,40
C
Scale 1:1
Material :
Blank:
180
7,09
Surfaces
196
7,71
Free size tolerances
R 2,
,11 75
Size:1
139
5,47
163
6,40
180
7,09
196
7,71
139
5,47
G
9100001006_MB-01
5
repl.for:
6
repl.by:
en
Page5
2,7
R ,11
1
Pa.
7
B
X1
B
X3
Thyro-AX
Thyro-AX
Thyro-AX
99
C
Thyro-AX
Thyro-AX
C
276
10,86
Thyro-AX
Touch Panel
260
10,23
Touch Panel
C
3
4
6
7
8
9
10
15
,59
56
2,20
(Optional T1/T2/T3)
B
X2 X22
L1
L1 (M6)
X22
X22
X22
X2 X22
L2
X2 X22
L3
Thyro-AX
X10
L1/L2/L3
X4
F
Touch Panel
T3
X2 X22
X2 X22
37
1,45
L2
L3 (M6)
X2 X22
L3
Thyro-AX
Thyro-AX
F
T3 (M6)
Thyro-AX
C
F1
T1
T3
193
7,61
G
G
Ethernet
D
27
1,07
1:1,25
T2
F5
USB
155
6,11
G
L1
L1 (M6)
F3
C
193
7,61
USB
56
2,20
T1 (M6)
F5
Ethernet
57
2,24
L2 (M6)
A
178
7,01
276
10,86
260
10,25
260
10,23
276
10,86
T2
14
,56
T2 (M6)
191
7,54
T3 (M6)
T1
9
X22
X22
5,5
,22
B
Thyro-AX
F1
8
B
151
5,94
T2 (M6)
X4/X10/X1
X22
E
X3
7
1:1,25
14
,55
X4/X10/X1
112,5
4,43
T1 (M6)
F3
D
X1
6
155
6,10
Observe protection note to DIN 34.
Thyro-AX
X2/X22 E
T1/T2/T3
L3 (M6)
5,5
,22
A
F
135
5,31
X3/X4/X10/X1
X2
X4/X10/X1
X2
14
,55
(Optional L1/L2/L3)
L2 (M6)
E
5
164
6,46
A
142
5,60
37
1,45
8
,31
X4/X10/X1
56
2,20
4
front view without USB cover
8
,31
14
,55
3
D
A
170
6,68
135
5,31
X3/X4/X10/X1
Touch Panel
2
190
7,49
164
6,46
C
D1
212
8,36
1:1,25
A
14
,55
12
238
9,38
front view without USB cover
Ethernet
D
11
260
10,25
Ethernet
5
260
10,23
2
USB
Observe protection note to DIN 34.
1
178
7,01
260
10,23
276
10,86
USB
48
1,88
Size: 2
L2
26
1,02
5
view A without
L3 protection caps
6
F
7
Observe protection note to DIN 34.
6
8
A
Stat.
Alteration
Date
Norm.
repl.for:
Origin:
(M6)
11
12
238
9,38
212
8,36
A
170
6,68
F3
T1
142
5,60
T2
A
3
6
7
14
,55
F
X4/X10/X1
X3/X4/X10/X1
193
7,61
(Optional L1/L2/L3)
Touch Panel
Thyro-AX
Editor
Check
Norm.
Date
20.07.2011
07.02.2012
Name
m.galmann
j.panitz
L3
T3 (M6)
A
(Optional L1/L2/L3)
T1
142
5,60
(Optional T1/T2/T3)
X1
F5
X10
T2
X4
T3
X3
48
1,88
A1
7
8
Stat.
Alteration
Date
Name
Norm.
M6
for protective earthing
Page
en
1
Pa.
repl.by:
front view without LCD-Display cover
1:2
H
1
2
C
view A without protection caps
USB
3
4
5
6
7
D
D
D
1:1,25
X2 X22
L3
X2 X22
T1/T2/T3
L3 (M6)
L1/L2/L3
112,5
4,43
T2 (M6)
T3 (M6)
X2
191
7,54
L1 (M6)
A
L1
X2 X22
L2
X2 X22
L3
X2 X22
T2 (M6)
Thyro-AX 3A...45A, ...60A
T2
T3
F
T1/T2/T3
L1/L2/L3
E
L3 (M6)
F
T1 (M6)
X2/X22
151
5,94
37
1,45
L2 (M6)
5,5
,22
191
7,54
56
2,20
X22
X22
X22
E
151
5,94
112,5
4,43
57
2,24
T3 (M6)
Thyro-AX 3A...100A
T1
F3
F1
T2
T3
F
L2
L2
14
,56
E
G
F5
193
7,61
X2 X22
X2/X22
L3
L2 (M6)
T3
37
1,45
T2
56
2,20
G
Size: 2
1
repl.for:
Origin:
B
Ethernet
56
2,20
191
7,54
8
L3 (M6)
T2 (M6)
12
Thyro-AX 3A...-...H..2
9100001015_MB-00
260
10,23
6
C
X2 X22
T1 (M6)
Scale 1:1 (1:2; 1:1,25)
Material :
Blank:
C
178
7,01
5
Thyro-AX
260
10,25
4
X2 X22
27
1,07
Surfaces
view A without protection caps
276
10,86
3
26
1,02
L2
L2 (M6)
7
193
7,61
Thyro-AX
M6
for protective earthing
X2 X22
11
G
Free size tolerances
48
1,88
2
170
6,68
B
X3
6
212
8,36
155
6,11
X4
view A without protection caps
190
7,49
F3
Size: 2
1
F
L1
10
37
1,45
56
2,20
5
L1 (M6)
9
F1
X10
4
5,5
,22
G
B
front view without LCD-Display cover
1:2
3
8
X4/X10/X1
X1
H
2
57
2,24
X22
X22
X22
X2
238
9,38
135
5,31
F5
(Optional T1/T2/T3)
5
164
6,46
14
Pa.
112,5
4,43
14
,56
A
4
front view without USB cover
,55
T3
1
191
7,54
2
190
7,49
en
repl.by:
1
151
5,94
T3 (M6)
1
Page
1
9100001015_MB-00
Name
E
10T1
G
112,5
4,43
8
T2 (M6)
9
F1
L1/L2/L3
7
A1
1:1,25
front view without LCD-Display cover
1:2
E
178
7,01
L1
4
5,5
,22
Thyro-AX 3A...-...H..2
H
X2/X22
T1/T2/T3
L3 (M6)
X2 X22
Name
m.galmann
j.panitz
260
10,25
3
X2 X22
Date
20.07.2011
07.02.2012
155
6,10
2
L1 (M6)
X22
X22
X22
X2 X22
Editor
Check
Norm.
M6
for protective earthing
Observe protection note to DIN 34.
X2
1
37
1,45
56
2,20
L2 (M6)
M6
for protective earthing
D
Scale 1:1 (1:2; 1:1,25)
Material :
Blank:
Surfaces
8
,31
E
56
2,20
48
1,88
15
,59
front view without LCD-Display cover
1:2
H
Free size tolerances
Observe protection note to DIN 34.
T1
X4
98
25
L1
X10
G
8
Stat.
Alteration
100
101
B
F1
B
F3
F2
300
11,8
325
12,8
361
14,2
F3
F2
F1
350
13,8
325
12,8
350
13,8
B
Ethernet
USB
Ethernet
C
USB
C
1
2
3
4
5
6
Front view without USB cover
1:5
A
D
12,5
,5
A
1:5
view B without pro
M8 for earthing
23
,9
view A without
caps
Optionalprotection
T1;T1
Optional L1;L2
X2 X22
X2 X22
X2 X22
22,1
,9
A
27,1
1,1
L3
L2
L1 M10
L1 Optionl
X3
30,7
1,2
26,1
1,0
L3
T2
X4
X4
X4
X10
X10
T3 Optional
T2 Optional
X10
X1
X1
E
X10
T1 Optionl
F1
E
X1
T3
T2
X7
F3
F2
X1
B
T1 M10
X7
X7
Lufteintritt
air inlet
170,4
6,7
Ethernet
361
14,2
235,5
9,3
249
9,8
176
6,9
T3
T3 Option
B
X4
373
14,7
L2
L2 Optional
29,7
1,2
L3 Optional
X2 X22
X2 X22
USB
35
1,4
170,4
6,7
176
6,9
325
12,8
300
11,8
D
view B without protection caps
T1 M8
F3
F2
F1
B
L1;L2;L3 Optional
X2 X22
E
B
A
view A without protection caps
Optional T1;T2;T3
L1 M8
8
6,5
,3
6,5
,3
249
9,8
23
,9
side view
M8 for earthing
283
11,1
7
283
11,1
350
13,8
D
A
6
23
,9
5
52
2,0
325
12,8
350
13,8
4
B
13
,5
3
Front view without USB cover
379
14,9
325
12,8
7
side view
52
2,0
22,1
,9
2
Observe protection note to DIN 34.
1
Observe protection note to DIN 34.
12,5
,5
379
14,9
328,2
12,9
235,5
9,3
C
C
F
35
1,4
283
11,1
35
1,4
2
3
35
1,4
186
7,3
35
1,4
4
311
12,2
01 30005755
Stat. Alteration
5
19.07.2013 pa.
Date
Name Origin:
E
T2
T1 M8
X4
side
view
X10
X1
T3
T3 Optional
283
11,1
X10
7
X4
A
T2 Optional
X1
X10
X2 X22
X2 X22
L1 M10
4
X2 X22
L3
L2
1:5
T1 Optionl
8
379
14,9
328,2
12,9
E
T1 M10
B
E
235,5
9,3
23
,9
249
9,8
X3
L1 Optional
X4
7
X4
sideX10view
X4
X10
T3 Optional
X10
T2 Optional
X1
T1 Optional
Optional T1;T1
Optional L1;L2
35
1,4
BGR.4F
L1;L2;L3 Optional
170,4
6,7
176
6,9
F
35
1,4
BGR.4
Free size tolerances Surfaces
DIN ISO
2768 m
Name
Date
Editor 05.04.2012 j.panitz
Check 05.04.2012 c.schaffarra
Norm.
F
33
1,3
35
1,4
158
6,2
35
1,4
1
283
11,1
61
2,4
35
1,4
2
3
35
1,4
186
7,3
35
1,4
4
311
12,2
01 30005755
Stat. Alteration
5
Scale 1:5 (1:2)
33
1,3
Mass: 23,4 Kg
Material:
Blank:
35
1,4
158
6,2
35
1,4
1
283
11,1
61
2,4
35
1,4
2
3
35
1,4
186
7,3
4
35
1,4
311
12,2
01 30005755
Stat. Alteration
5
Free size tolerances Surfaces
Scale 1:5 (1:2)
Name
Date
Editor 10.04.2012 j.panitz
Check 10.04.2012 c.schaffarra
Norm.
ThyroAX
Material:
Blank:
18.07.2013 j.pa.
Date
Name Origin:
910000121
repl.for:
ThyroAX 3A ...... H ... 2
9100001214_MB01
19.07.2013 pa.
Date
Name Origin:
1:5
X1
X7
X7
A
Optional T1;T2;T3
4
6
283
X1
11,1
T3
T2
X7
X1
61
2,4
35
1,4
3
L2 Optional
L3 Optional
5
29,7
1,2
6
X4
283
11,1
view B without protection caps
Front
L1 Optionlview without USB cover
X3
35
1,4
2
235,5
9,3
5
L3
6,5
,3
249
9,8
L2
L2 Optional
Page
1
1 Pa.
176
6,9
4
L1 M8
L3 Optional
X2 X22
X2 X22
158
6,2
view A without protection caps
3
D
22,1
,9
X2 X22
2
A2
en
repl.by: M8 for earthing
27,1
1,1
1
35
1,4
1
52
9100001214_MB01
2,0
A
repl.for:
23
,9
view B without protection caps
view A without protection caps
B
cover
A
M8 for earthing
26,1
1,0
3
52
2,0
6,5
,3
30,7
1,2
D
Observe protection note to DIN 34.
13
,5
12,5
,5
D
33
1,3
ThyroAX 3A ...... H ... 2
170,4
6,7
158
6,2
1
61
2,4
Mass: 23,4 Kg
Material:
Blank:
23
,9
35
1,4
Scale 1:5 (1:2)
12,5
,5
Name
Date
Editor 05.04.2012 j.panitz
Check 05.04.2012 c.schaffarra
Norm.
C
33
1,3
Observe protection note to DIN 34.
F
USB
C
Free size tolerances Surfaces
DIN ISO
2768 m
22,1
,9
BGR.4
Ethernet
repl.for:
repl.by:
A2
en
Page
1
1 Pa.
B
B
F3
F2
F1
373
14,7
350
13,8
325
12,8
350
13,8
361
14,2
325
12,8
300
11,8
F3
Luftein
air inl
Ethernet
USB
C
view B without protection caps
thout protection caps
D
L3 Optional
X2 X22
L2 Optional
6,5
,3
M8 for earthing
L1 Optionl
X2 X22
X2 X22
view B without protection caps
D
view A without protection caps
X2 X22
Thyro-AX 3A...230A, ...240A, ...280A, ...350A
L2 Optional
L3 Optional
X3
L1 Optional
22,1
,9
X10
X4
T3 Optional
X10
L1 M10
X4
T2 Optional
X10
T1 Optionl
L2
L3
27,1
1,1
26,1
1,0
X4
30,7
1,2
L3
X3
A
22,1
,9
Thyro-AX 3A...130A, ...170A
52
2,0
X4
,7
2
12,5
,5
6,5
,3
Observe protection note to DIN 34.
13
,5
C
X10
X4
T3 Optional
X10
X4
T2 Optional
X10
T1 Optional
102
103
5
6
4
7
9
10
8
11
Seitenansicht ohne10LPAbdeckung
ohne Abdeckung LP
Seitenansicht ohne LPAbdeckung
9
ohne vordere Seitenwande
und Abdeckung LP
ohne Frontabdeckung
A
8
6
7
Seitenansicht
ThyroAX ...1000 HFRL.2
ohne vordere Seitenwande
und Abdeckung LP
Seitenansicht ThyroAX
...1000 HFRL.2
5
565
22,244
12
1
11
2
1
2
1
2
ohne Abdeckung LP
A
A
565
22,244
3
3
4
4
5
3
4
Frontansicht
ThyroAX
Frontansicht 2ThyroAX
...1000
HFRL.2...10003 HFRL.2
ohne Frontabdeckung
ohne Frontabdeckung
Frontansicht ThyroAX
Frontansicht
...1000
ThyroAX
HFRL.2...1000 HFRL.2
ohne Frontabdeckung
A
A
A
Touch PanelB
V2
V6
USB
USB
Ethernet
Ethernet
V3
F3
V5
F5
V1
V3
T1
V5
USB
USB
Ethernet
Ethernet
C
C
T1
V1
F3
F1
V1
C
V3
F6
V6
V6
F3
F5
V3
V5
V5
F5
F5
V3
V5
T5
T3
T1
V6
V6
F6
V4
V3
T3
T1
F6
V4
F5
V1
T1
T5
F4
V4
F3
V1
F1
C
F6
V4
F3
T1
T3
F4
V2
F1
C
C
F4
V2
F2
V2
T5
T3
F4
F2
F2
F1
118,5
4,665
V1
F1
C
550
21,654
F5
118,5
4,665
F3
600
23,622
550
21,654
Ethernet
600
23,622
USB
C
F2
V2
V4
F1
Touch Panel
V6
F6
T3
550
21,654
Touch Panel
V4
F4
Ethernet
B
Touch PanelB
F6
V2
F2
USB
7
ohne vordere
und Abdeckung
25
,984
B
B
F4
F2
6
6
6
7 ...
Seitenansicht
ThyroAX
Seitenansicht
ThyroAX
...1000
HFRL.2
ohne vordere Seitenwande ohn
und Abdeckung LP
und
Thyr
Seitenansicht Seitenansicht
ThyroAX
...1000
H
5
ohne Frontabdeckung
A
550
21,654
B
Touch Panel
B
6
5
550
21,654
B
Touch Panel
5
4
25
,984
25
,984
A
1
12
25
,984
4
25
,984
3
3
Frontansicht ThyroAX ...1000
HFRL.2
ohne Frontabdeckung
Frontansicht ThyroAX ...1000 HFRL.2
2
550
21,654
2
1
25
,984
1
V5
T5
T5
T3
T5
Cu 40x10
O 14
,551 Cu 1,574x0,394
O 14
,551
198
7,795
Cu 40x10
O 14
,551 Cu 1,574x0,394
25
,984
Draufsicht ThyroAX ...1000 HFR.2
Draufsicht ThyroAX ...1000 HFR.2
E
245
9,646
295
11,614
25
,984
245
9,646
295
11,614
A
212,5
8,366
25
,984
20
,787
212,5
8,366
für Erdung
O 14
,551 for earthing
20
,787
Seitenansicht
ThyroAX 1A ...1400
HFRL.2
Seitenansicht
ThyroAX
1A ...1500
HFRL.2 HFRL.2
ThyroAX
1A ...1400
ThyroAX 1A ...1500 HFRL.2
E
T1
9
,354
9
,354
20
,787
25
,984
für Erdung
O 14
,551 for earthing
L1
5
9
,354D
D
L1 6
T1
L3
T3
E
E
L5
T3
7
T1
T5
T3
L5
T5
8
L5
T5
535
21,063
565
22,244
535
21,063
565
22,244
535
21,063
565
22,244
10
11
Seitenansicht ohne LPAbdeckung
T5
ohne Abdeckung LP
25
,984
535
21,063
565
22,244
25
,984
245
9,646
295
2511,614
,984
25
,984
für Erdung
O 14
,551 for earthing
Draufsicht
ThyroAX
Draufsicht ThyroAX
...1000
HFR.2 ...1000 HFR.2
Draufsicht
ThyroAX
Draufsicht ThyroAX
...1000
HFR.2 ...1000 HFR.2
E
9
L5
ohne vordere Seitenwande
und Abdeckung LP
E
E
L3
L1
T1ThyroAX
L3
T3
L3
Seitenansicht
...1000
HFRL.2
L1
9
,354
25
,984
535
21,063
565
22,244
D
D
ohne Frontabdeckung
25
,984
535
21,063
565
22,244
D
D 4
3
25
,984
2
Frontansicht ThyroAX ...1000 HFRL.2
25
,984
20
,787
20
,787
1
T5
25
,984
T5
L5
25
,984
L5
T3
25
,984
T3
L3
20
,787
L3
T1
20
,787
T1
L1
9
,354
20
,787
L1
9
,354
D
198
7,795
D
245
9,646
295
11,614
für Erdung
O 14
,551 for earthing
für Erdung
O 14
,551 for earthing
565
22,24425
,984
245
9,646
295
11,614
für Erdung
O 14
,551 for earthing
25
,984
245
9,646
295
11,614
212,5
8,36625
,984
25
,984
SeitenansichtSeitenansic
ThyroAX 1A ...1400
ThyroAX
HFRL.2
1A ...140
Seitenansicht
Sei
ThyroAXThyroAX
1A ...1500
ThyroAX
HFRL.2
1A ...150
1A ...1400
ThyroAX
HFR
ThyroAX 1A ...1500
ThyroAX
HFR
E
B
V3
T1
V5
T5
T3
17 26 17
,669 1,024 ,669
108,5
4,272
G
G
G
G
G
G
Cu 40x10
O 14
,551 Cu 1,574x0,394
G
198
7,795
G
F
600
23,622
F5
V1
F
118,5
4,665
F3
F1
C
F
550
Observe
21,654 protection note to DIN 34.
F
F
Observe protection note to DIN 34.
V6
Observe protection note to DIN 34.
F6
V4
F
17 26 17
,669 1,024 ,669
108,5
4,272
F
V2
USB
Ethernet
Observe protection note to DIN 34.
F4
F2
Observe protection note to DIN 34.
Observe protection note to DIN 34.
Touch Panel
F
Cu 60x10
O 14
,551 Cu 2,361x0,394
D
L1
T1
Free size tolerances Surfaces
2
3
4
5
6
1
Frontansicht
ThyroAX ...1000 HFRL.24
3
2
2
1
5
ohne Frontabdeckung
7
8
3
2
6
4
Seitenansicht ThyroAX ...1000
HFRL.2
3
7
9
ohne vordere Seitenwande
und Abdeckung LP
5
4
8
9
ohne vordere Seitenwande
und Abdeckung LP
ohne Frontabdeckung
5
10
11
Seitenansicht ohne LPAbdeckung
6
10
ohne Abdeckung
11 LP
7
7
26 17
1,024 ,669
199,5
7,854
8
12
26 17
1,02412 ,669
Date
Name Origin:
Stat. Alteration
Date
Mass: 0,000 kg
Name Origin:
repl.for:
H
25
,984
H
H
A1
en
245
9,646
295
11,614
H
25
,984
212,5
8,366
20
,787
295
11,614
für Erdung
O 14
,551 for earthing
Page
1
1 Pa.
Page
1
1 Pa.
A1
en
repl.by:
1
1
1
2
1
2
2
3
3
Seitenansicht
ThyroAX
1A ...1400
HFRL.2
2
3
ThyroAX 1A ...1500 HFRL.2
4
3
4
4
5
4
5
5
295
11,614
6
5
295
11,614
199,5
7,854
6
6
295
11,614
7
6
7
A
25
,984
25
,984
Stat. Alteration
9
Mass: 0,000 kg
Blank:
ThyroAX
3A......H...2
Name
Date
ThyroAX 3A......H...2
j.panitz
Editor
Check
ThyroAX
Draufsicht ThyroAX
...10003A......H...2
HFR.2
Norm.
9100002190_MB00
repl.for:
repl.by:
9100002190_MB00
A
ohne Abdeckung LP
565
22,244
9 E
8
565
Seitenansicht ohne LPAbdeckung
22,244
Seitenansicht ThyroAX ...1000 HFRL.2
Frontansicht ThyroAX ...1000 HFRL.2
6
295
11,614
Scale 1:2
Blank: 535
Free size tolerances Surfaces
Scale 1:2
21,063
Name
Date
565Material:
ThyroAX
3A......H...2
j.panitz
22,244
F
Observe protection note to DIN 34.
1
Cu 6
O 14
,551 Cu 2
T5
Material:
Editor
Check
Norm.
H
199,5
7,854
L5
T3
25
,984
20
,787
178
7,008
Bgr.7F
Bgr.7F
H
295
11,614
L3
9
,354
178
7,008
Cu 60x10
O 14
,551 Cu 2,361x0,394
B
Panel
B
F4
F6
V2
V4
V6
17 26 17
,669 1,024 ,669
108,5
4,272
F2
SB
F4
F6
V5
F5
V3
V5
T1
118,5
4,665
V1
T5
T3
118,5
4,665
V3
F3
600
23,622
V1
F1
G
Cu 60x10
O 14
,551 Cu 2,361x0,394
C
178
7,008
V6
F5
600
23,622
V4
F3
550
21,654
V2
F1
550
21,654
F2
et
C
Bgr.7F
T1
T5
T3
Cu 40x10
O 14
,551 Cu 1,574x0,394
L1
T1
L3
L5
T3
1
198
7,795
L5
2
3
4
5
D
T5
25
,984
T3
535
21,063
565
22,244
25
,984
535
21,063
565
22,244
Draufsicht
ThyroAX ...1000 HFR.2
Thyro-AX 3A...1000A
Draufsicht ThyroAX ...1000 HFR.2
245
9,646
295
11,614
25
,984
20
,787
L3
20
,787
T1
199,5
7,854
Editor
Check
Norm.
26 17
1,024 ,669
D
T5
9
,354
L1
Date
295
11,614
198
7,795
Cu 40x10
O 14
,551 Cu 1,574x0,394
9
,354
Free size tolerances Su
H
25
,984 O 14 für Erdung
,551 for earthing
für Erdung
O 14
,551 for earthing
245
9,646
295
11,614
25
,984
212,5
8,366
20
,787
25
,984
212,5
8,366
Seitenansicht
ThyroAX 1A ...1400 HFRL.2
ThyroAX 1A ...1500 HFRL.2
Seitenansicht
ThyroAX 1A ...1400 HFRL.2
ThyroAX 1A ...1500 HFRL.2
20
,787
E
E
F
Thyro-AX 3A...1400A, ...1500A
6
7
8
9
Stat. Alteration
Date
Name Origin:
Nam
j.pa
104
105
12. TECHNICAL DATA
CAUTION
The induction of the downstream transformer should not exceed 1.45 T
in case of mains overvoltage in use (grain-oriented, cold rolled sheets)
= 1.2 T nominal induction.
12.1 TECHNICAL DATA
TYPE VOLTAGE ...H RLP2
24V to 230V + 10%
24V to 400V + 10%
24V to 500V + 10%
24V to 600V + 10%
IP20 PROTECTION
DANGER:
Energized parts.
The device shall immediately be disconnected from the power supply
before installation.
The Thyro-AX is designed according to IP20 protection code. To ensure
protection during operation, the correct mounting is necessary of the
added protection devices at each electric connection.
Please see chapter 5.2 “IP20 Protection“ for detailed information.
ELECTRONIC SUPPLY
The (additional) control voltage supply serves to supply the internal
electronics max. 10W or 27VA respectively (typically 5.5W or 16VA
respectively) for each supplying power unit (Please consider that for
2-phase device the information has to applied 2-times and for 3-phase
operation respectively 3-times), 230 V~/110 V~ (85 V - 265 V).
MAINS FREQUENCY
all types 47 Hz to 63 Hz;
maximum frequency alteration 55% per half wave
LOAD TYPE
- Ohmic load
ohmic load with Rwarm/Rcold relation to 6, peak current limitation to
î=3xINom (in VAR)
- Transformer load
OPERATING MODES
TAKT = full wave mode
VAR = phase angle firing (only for types Thyro-AX 1A and Thyro-AX 3A)
QTM = quick half wave cycle operation (only for type Thyro-AX 1A)
SWITCH = switch mode
SETPOINT INPUTS
4 setpoint inputs (SELV, PELV), separated from the mains.
- setpoint 1 and 2: analog setpoint input signal ranges:
- 0(4) - 20 mA Ri = circa 250 Ω
- 0(1) - 5 V Ri = circa 14.7 kΩ
- 0(2) - 10 V Ri = circa 11 kΩ
- setpoint 3: digital potentiometer
- s etpoint 4: optional bus interface, connection of overriding PC or
automation system.
CONTROL CHARACTERISTICS
Any controller (e.g. temperature controller), whose output signal lies in
the range 0-20 mA/0-5 V/0-10 V, is adaptable to the power controller.
CONTROL INPUT FOR SWITCH MODE OPERATION
maximum switching frequency 5 Hz
ton min = 100 ms
toff min = 100 ms
ANALOG OUTPUTS
signal level 0-10 V, 2-10 V 0-20 mA, 4-20 mA
maximum output load voltage 10 V
CONTROL MODES
… H RLP2:
voltage control Ueff, U2eff
current control Ieff, I2eff
power control P
ACCURACY OF THE CONTROL:
voltage ± 1,5%* in range -15% to +10% of the type voltage.
current ± 1,5%*
* in relation to the respective end value(based on the digital set point)
106
107
DATA LOGGING
Phase power and phase resistances are measured. Therefore also
asymmetrical loads and changes are recorded precisely. As an option
for pure inductive loads, the measurement can be set to an virtual
star point.
LIMITATIONS
voltage limitation Ueff
RELAY OUTPUTS
changeover, contact material: AgSnO2/Au coated
The relay can be used for low load circuits (> 5 V 20 mA), however, not
if it is preloaded with 230 V~.
Maximum values: 250 V, 4 A, 180 W, 1500 VA
MULTI I/O
I/O
CONNECTION
Multi I/O 1
(Direction
selectable
by jumper)
Multi I/O 2
Input
Multi I/O 3
LOGIC LEVEL SIGNAL LEVEL
High active
0-30 V, Ri = 3,3 kΩ
Output
X22.9 (default:
input active)
X22.9
DEFAULT
VALUE
SWITCH
-
Low active
12 V, Ri = 3,5 kΩ
Input
Output
X2.7
X2.6
Syt-In
Syt-Out
High active
Low active
Input
X22.1
Output
Bus connection/ Low active,
set point
only for SYT_
remote
IN feature
high active
High active
0-24 V, Ri = 10 kΩ
12 V, Ri = 34 kΩ,
max 359 µA toward
GND
Bridge to GND,
Ri = 10 kΩ
Multi I/O 4
Input
green LED next
to Ethernet plug
X2.4
Multi I/O 5
Output
Input
Output
Analog SW1
High active
X2.11
Analog SW2
High active
-
-
-
TAB. 12 MULTI I/O SIGNALS
X2 1
2
3
4
5
6
Switch
up
7
8
9 10 11 12 13
Switch
down
FIG. 24 D
IGITAL SET POINT 2 VIA EXTERNAL BUTTONS
current limitation Ieff
power limitation P
peak current limitation to î=3xINom in phase angle firing
NUMBER
optional for digital setpoint 2 with external switches
(see range of set
point inputs)
(see range of set
point inputs)
-
AMBIENT TEMPERATURE
40 °C at ...F... (with forced cooling)
40 °C in case of natural air cooling (without fans)
If the maximum ambient temperature is reduced the maximum load
current can be increased up to 110% of the nominal current. Here the
following applies: 1% more current requires a temperature reduction of
1 °C.
The maximum ambient temperature can be increased up to a maximum
of 55 °C if the maximum load current is reduced. Here the following
applies: 1°C more ambient temperature requires a current reduction of
2%. Device usage for UL applications up to a maximum ambient temperature of 40 °C.
108
109
1 Pound-Force Inch = 0.112985 Newton Meter
CONNECTION DATA OF THE POWER CONNECTION
Grounding screw/bolt for protective conductor connection to the heat
sink. The grounding also serves EMC means (Y - capacitor 4.7 nF).
16 / 30 A
45 A* 60* / 100 A* 130 / 170 / 230 A 240 / 280 A 350 A 495 A 650 A 1000 A 1400 A
1500 A CONNECTIONGROUNDINGCONDUCTOR
L1, T1, L2, T2, SCREWCROSSL3, T3
SECTION
lug / M4 lug / M4 maximum 6 mm2
M6
M 6 maximum 50 mm2
M6
M 6 maximum 50 mm2
M8
M 10 95 / 120 mm2
M 10 M 10 150 / 185 mm2
M 10 M 10 185 mm2
M 10 M 10 Cu 48x3; 2xø11
M 10 M 10 Cu 48x3; 2xø11
M12 M12 Cu 60x10; 2xø14
M12
M12
Cu 60x10; 2xø14
M12 M12 Cu 60x10; 2xø14
Tightening torques for electric connections in Nm
SCREW
MIN. VALUE NOM.
[NM]
VALUE
[NM]
MAX.
VALUE
[NM]
M2
0.2
0.25
0.3
M3
0.6
0.75
0.9
M4
1.0
1.2
1.4
M5
1.7
2.0
2.3
M6
2.6
3.0
3.5
45;60;100
M8
5.1
6.0
6.9
130;170;230 130;170;230;
240;280;350
130;170;230;
240;280;350
240;280;350
M10
8.5
10.0
11.5
M12
13.2
15.5
17.8
GROUND
POWER
CONNECTION CONNECTION
FUSE
CONTROL
WIRE
TYPE IN [A]
Phoenix
terminals
16;30
Phoenix
terminals
16;30
16;30
45;60;100
45;60;100
Tightening torques for electric connections in pound inches
TAB. 13 CONNECTION DATA OF THE POWER CONNECTION
With UL applications only use 60 °C or 60 °C/75 °C copper conductors
(with the exception of control cables).
*W
ith UL applications only use 75 °C copper conductors (with the
exception of control cables).
SCREW
FUSE
MAX.
VALUE
[POUND
INCHES]
2.5
GROUND
POWER
CONNECTION CONNECTION
M2
MIN. VALUE NOM.
[POUND
VALUE
[POUND
INCHES]
INCHES]
1.9
2.2
M3
5.6
6.6
7.6
16;30
M4
9.0
10.6
12.2
M5
15.0
17.7
20.4
M6
22.6
26.6
30.5
45;60;100
M8
45.1
53.1
61.1
130;170;230 130;170;230;
240;280;350
130;170;230;
240;280;350
240;280;350
M10
75.2
88.5
101.8
M12
116.6
137.2
157.8
TAB. 14 TIGHTENING TORQUES
CONTROL
WIRE
TYPE IN [A]
Phoenix
terminals
Phoenix
terminals
16;30
16;30
45;60;100
45;60;100
110
111
12.2 APPROVALS AND CONFORMITY
In detail
The standards are subject to an adaptation and renumbering process
which will continue for years as a result of European harmonization and
international alignment. That is why in the detail listings norms to date
are stated even if their expiry date has already been decided.
There is no product norm for thyristor power controllers so that a
sensible norm framework must be created from the corresponding fundamental norms in order to facilitate safe application and comparison
possibilities.
DEVICE APPLICATION CONDITIONS
Thyristor power controllers are not devices to be used for disconnecting purposes in the sense of DIN EN 50110-1 and as a result may only
be operated in connection with an appropriate upstream mains disconnecting device (e.g. breaker, observe VDE 0105 T1).
The Thyro-AX has the following approvals and conformities:
• Quality standard in accordance with EN ISO 9001
• Approval in accordance with UL 508, File No. E 135074 Investigated
under consideration of the Canadian National Standard C22.2 No.
14-95
• UL Markings:
-Tightening torque (in pound inches) see Chapter 12.1. (only for
devices rated 16A or 30A)
-Wiring details: „Use 60/75°C wires“ and specified tightening
torque (pound inches) (only for devices rated 45A, 60A or 100A)
- „Max. surrounding air temperature 40°C“
-Suitable For Use On A Circuit Capable Of Delivering Not More
Than 100kA rms Symmetrical Amperes, xxx Volts Maximum, When
Protected by RK5 Class Fuses“
NOTE:
xxx = max. allowable voltage depending upon rating of the device
-„Branch circuit protection must be provided and sized according
National Electrical Code and any additional local codes“
• CE conformity
- Low voltage directive 2006/95/EEC; EMC directive 2004/108/EEC
Built-in device
DIN EN 50 178
General requirements
DIN EN 60146-1-1
Installation position
vertical
Operating location industry sector
Storage temperature
-25 °C - +55 °C
Transport temperature
-25 °C - +70 °C
Operating temperature
-10 °C - +40 °C with forced cooling
-10 °C - +40 °C with natural air cooling
-10 °C - +55 °C with reduced type current -2%/°C
with UL applications
up to +40 °C
Load category
I
100% permanent
DIN EN 60 146-1-1
operation
Damp heat EN 600721-3-3 93%
Overvoltage category
III
DIN EN 50 178
Degree of pollution
2
DIN EN 50 178
Altitude
≤ 1000 m above sea level
Safe isolation up to 600 V
DIN EN 50 178
mains voltage
EMC interference immunity
EN 61000-6-2
Test in acc. with
DIN EN 60 146-1-1
EMC emission standard
EN 61000-6-4
Compatibility level Class 3 EN 61000-2-4
112
113
12.3 TYPE OVERVIEW
TYPE POWER [KW]
VOLTAGE IN [V]
CURRENT 230
[A]
16
3
30
7
10
45
400
14
24
60
100
130
170
230
240
280
350
1000
1400
1500
6
12
18
500
600 Thyro-AX
8
15
22
27
40
30
50
60
30
52
65
78
39
68
85
102
53
64
80
92
112
140
400
115
140
175
500
700
DIMENSIONS
IN MM/KG
POWER LOSS [W]
36
23
TYPE POWER [KW]
VOLTAGE IN [V]
138
168
210
600
840
600
* 50/60 HZ
TAB. 15 Thyro-AX 1A ...H RLP2
25
40
51
61
66
72
116
130
159
182
180
211
280
332
352
399
1317
1401
1721
1761
FAN
W
1
1
1
*19/18
*19/18
*19/18
*19/18
24
24
*64/80
*64/80
45
45
52
52
52
52
54
54
129
129
129
129
129
129
129
129
285
285
285
285
H
196
196
276
276
276
276
276
276
361
361
361
361
373
373
373
373
550
550
550
550
CURRENT
[A]
D WEIGHT FUSE F1
193
193
238
238
238
238
238
238
283
283
283
283
283
283
283
283
565
565
565
565
1.1
1.1
2.2
2.2
2.2
2.2
2.8
2.8
7.8
7.8
7.8
7.8
8.3
8.3
8.3
8.3
33.5
33.5
33.5
33.5
20
40
63
63
80
80
200
200
200
200
315
315
315
315
350
500
2 x 1000
2 x 1000
4 x 900
4 x 900
16
30
45
60
100
130
170
230
240
280
350
1000
1400
1500
400
500
11
21
31
14
26
39
41
52
69
86
600 Thyro-AX
47
62
104
90
112
117
147
159
199
135
176
239
194
242
693
DIMENSIONS
IN MM/KG
POWER LOSS [W]
242
303
363
866
1212
1039
1455
1039
* 50/60 HZ
TAB. 16 Thyro-AX 2A ...H RLP2
49
80
101
121
131
144
231
260
318
368
360
422
600
664
702
79
2654
2822
3462
3542
FAN
2
2
2
*38/36
*38/36
*38/36
*38/36
39
39
*127/180
*127/180
W
H
90
90
108
108
108
108
110,2
110,2
250
250
250
250
250
250
250
250
452
452
452
452
196
196
276
276
276
276
276
276
361
361
361
361
373
373
373
373
550
550
550
550
D WEIGHT FUSE F1
193
193
238
238
238
238
238
238
283
283
283
283
283
283
283
283
565
565
565
565
2.2
2.2
4.4
4.4
4.4
4.4
5.6
5.6
15.6
15.6
15.6
15.6
16.6
16.6
16.6
16.6
53.0
53.0
53.0
53.0
20
40
63
63
80
80
200
200
200
200
315
315
315
350
350
500
2 x 1000
2 x 1000
4 x 900
4 x 900
114
115
TYPE POWER [KW]
VOLTAGE IN [V]
CURRENT
[A]
16
30
45
60
100
130
170
230
240
280
350
1000
1400
1500
400
500
11
21
31
14
26
39
41
52
69
86
600 Thyro-AX
47
62
104
90
112
118
147
159
199
135
176
194
242
693
DIMENSIONS
IN MM/KG
POWER LOSS [W]
242
303
239
291
363
866
1212
1039
1455
1040
* 50/60 HZ
TAB. 17 Thyro-AX 3A ...H RLP2
73
121
151
182
197
216
346
390
475
544
540
632
840
995
1054
1194
3891
4143
5102
5223
FAN
3
3
3
*57/54
*57/54
*57/54
*57/54
*64/80
*64/80
*127/180
*127/180
W
H
135
135
164
164
164
164
164
164
375
375
375
375
375
375
375
375
618
618
618
618
196
196
276
276
276
276
276
276
361
361
361
361
373
373
373
373
550
550
550
550
D WEIGHT FUSE F1
193
193
238
238
238
238
238
238
283
283
283
283
283
283
283
283
565
565
565
565
3,3
3,3
6,6
6,6
6,6
6,6
8,4
8,4
23,4
23,4
23,4
23,4
24,9
24,9
24,9
24,9
72,0
72,0
72,0
72,0
20
40
63
63
80
80
200
200
200
200
315
315
315
315
350
500
2 x 1000
2 x 1000
4 x 900
4 x 900
116
117
World Headquarters
1625 Sharp Point Drive
Fort Collins, CO 80525 USA
Specifications are subject to change without notice.
970.221.4670 Main
970.221.5583 Fax
© 2014 Advanced Energy Industries, Inc. All rights reserved. Advanced Energy® and Thyro-AX ™ are
trademarks of Advanced Energy Industries, Inc.
www.advanced-energy.com
118