Meta-Analysis of Correlated Data Meta-Analysis of Correlated Data Common Forms of Dependence • Multiple effects per study – Or per research group! • Multiple effect sizes using same control • Phylogenetic non-independence • Measurements of multiple responses to a common treatment • Unknown correlations… Multiple Sample Points per Study! Study Experiment in Study Hedges D V Hedges D Ramos & Pinto 2010 1 4.32 7.23 Ramos & Pinto 2010 2 2.34 6.24 Ramos & Pinto 2010 3 3.89 5.54 Ellner & Vadas 2003 1 -0.54 2.66 Ellner & Vadas 2003 2 -4.54 8.34 Moria & Melian 2008 1 3.44 9.23 Hierarchical Models • Study-level random effect • Study-level variation in coefficients • Covariates at experiment and study level Hierarchical Models • Random variation within study (j) and between studies (i) Tij ~ N(qij, sij2) qij ~ N(yj,wj2) yj ~ N(m,t2) Study Level Clustering Hierarchical Partitioning of One Study Study Mean Variation due to w Variation due to t Grand Mean Example: Data Set 1 1 2 3 4 5 6 7 8 ... Group Effect Variance A 0.2 0.10 A 0.6 0.15 A 0.5 0.05 A 0.1 0.06 B 0.8 0.08 B 0.4 0.05 B 0.9 0.04 C 0.2 0.09 A Two-Step Solution Tij ~ N(qij, sij2) qij ~ N(yj,wj2) yj ~ N(m,t2) library(plyr) data1_study <- ddply(data1, .(Group), function(adf){ mod <- rma(Effect, Variance, data=adf) cbind(theta_j = coef(mod), se_theta_j = coef(summary(mod))[1,2], omega2 = mod$tau2) }) A Two-Step Solution Tij ~ N(qij, sij2) qij ~ N(yj,wj2) yj ~ N(m,t2) > data1_study Group theta_j se_theta_j omega2 1 A 0.3312500 0.1369306 0.00000000 2 B 0.7005364 0.1654476 0.02854676 3 C 0.6788453 0.1987595 0.17151248 4 D 0.7836646 0.2677693 0.26470540 5 E 0.8552760 0.1556476 0.14561528 yj wj A Two-Step Solution Tij ~ N(qij, sij2) qij ~ N(yj,wj2) yj ~ N(m,t2) > rma(theta_j, I(se_theta_j^2), data=data1_study) Random-Effects Model (k = 5; tau^2 estimator: REML) t2 tau^2 (estimated amount of total heterogeneity): 0.0272 (SE = 0.0414) ... estimate se zval pval ci.lb ci.ub 0.6472 0.1087 5.9545 <.0001 0.4342 0.8603 *** m Multiple Effects per Research Group Solutions to Multiple Hierarchies • Multiple-Step Meta-analyses • Multi-level hierarchical model fits – Better estimator – Accommodates more complex data structures – May need to go Bayesian (don't be scared!) • Model correlation… Common Forms of Dependence • Multiple effects per study – Or per research group! • Multiple effect sizes using same control • Phylogenetic non-independence • Measurements of multiple responses to a common treatment • Unknown correlations… Multiple Effect Sizes with Common Control Effect of each treatment calculated using same control! The Control Keeps Showing Up! Treatment - Control D= JM SDPooled 1 1 d s (D) = + = nt n c 2n t +c 2 • nc and sdc are going to be the same for all treatments • Effect sizes will covary Calculating Covariance Treatment - Control JM D= SDPooled d 1 1 = + s (D) = n c 2n t +c nt 2 Dt1Dt 2 1 cov(DT 1, DT 2 ) = + n c 2n c +t1+t 2+t 3+... Formulae available or derivable for all effect sizes A Mixed Effect Group Model • Group means, random study effect, and then everything else is error Ti ~ N(qim, si2) where qim ~ N(mm,t2) A Mixed Effect Group Model • Group means, random study effect, and then everything else is error Ti ~ MVN(qi, Si) where qi ~ MVN (Xim, G2) What are qi and Si? qi = Si= éq i1 ù ê ú êq i2 ú êë ... úû Ti ~ MVN(qi, Si) és 2 i1 0 0ù ê ú 2 ê 0 s i2 0 ú êë 0 0 ... úû What about the treatment effects? é m1 ù ê ú ê m2 ú êë ... úû Xi = é1 0 0 ù ê ú 0 1 0 ê ú êë0 0 ... úû Gi= ét 2 0 0 ù ê ú 2 2) q ~ MVN (X m, G 0 t 0 i ê ú i êë 0 0 ... úû m= What if treatments are correlated? Ti ~ MVN(qi, Si) Si = és 2 i1 si12 ... ù ê ú 2 êsi12 s i2 ... ú êë ... ... ... úû Why does covariance matter? s2x-y = s2x + s2y + 2s x,y • In asking if two treatments differ, cov helps tighten confidence intervals • High cov = more weight for a study as treatments share information Multiple Treatments 1 2 3 4 5 6 study trt m1i m2i sdpi n1i n2i 1 1 7.87 -1.36 4.2593 25 25 1 2 4.35 -1.36 4.2593 22 25 2 1 9.32 0.98 2.8831 38 40 3 1 8.08 1.17 3.1764 50 50 4 1 7.44 0.45 2.9344 30 30 4 2 5.34 0.45 2.9344 30 30 Common Control! http://www.metafor-project.org/doku.php/analyses:gleser2009 Calculating the Variance/Covariance Matrix [1,] [2,] [3,] [4,] [5,] [6,] [,1] 0.113 0.060 0.000 0.000 0.000 0.000 [,2] 0.060 0.098 0.000 0.000 0.000 0.000 [,3] 0.000 0.000 0.105 0.000 0.000 0.000 http://www.metafor-project.org/doku.php/analyses:gleser2009 [,4] 0.000 0.000 0.000 0.064 0.000 0.000 [,5] 0.000 0.000 0.000 0.000 0.098 0.055 [,6] 0.000 0.000 0.000 0.000 0.055 0.082 Fitting a Model with a VCOV Matrix > rma.mv(yi ~ factor(trt)-1, V, random =~ 1|study, data=dat) Comparison to No Correlation Model With correlation estimate factor(trt)1 factor(trt)2 2.3796 1.5784 se 0.1641 0.2007 zval pval ci.lb ci.ub 14.4984 7.8662 <.0001 <.0001 2.0579 1.1851 2.7013 1.9716 zval 15.7196 7.1405 pval <.0001 <.0001 ci.lb 2.0797 1.1011 ci.ub 2.6722 1.9343 Without correlation factor(trt)1 factor(trt)2 estimate se 2.3759 0.1511 1.5177 0.2125 Common Forms of Dependence • Multiple effects per study – Or per research group! • Multiple effect sizes using same control • Phylogenetic non-independence • Measurements of multiple responses to a common treatment • Unknown correlations… Effect Size on Related Organisms Not Independent Warming on Litterfall Pine Trees Redwoods Fir Trees Oak Trees Phylogenetic Distances Determines Covariances for Weights What about Multiple Studies of Some Species? Common Forms of Dependence • Multiple effects per study – Or per research group! • Multiple effect sizes using same control • Phylogenetic non-independence • Measurements of multiple responses to a common treatment • Unknown correlations… Common Treatments Treatment Response 1 Response 2 Response 3 Common Treatments CO2 CO2 Assimilation GS Stomatal Conductance PN Correlation Between Responses What does Correlation between effects mean? Xi = Gi= é1 0 0 ù ê ú 0 1 0 ê ú êë0 0 ... úû é t2 1 ê êrt1t 2 êë ... m= é m1 ù ê ú ê m2 ú êë ... úû rt1t 2 ... ù ú q ~ MVN (X m, G2) 2 i t2 ... ú i ... ... úû What Do We Do? 1. Create a 'composite' measure – Average – Weighted Average 2. Estimate different coefficients directly 3. Robust Variance Estimation (RVE) The CO2 Effect Data 1 2 3 4 5 6 7 8 9 10 experiment Paper Measurement Hedges Var 1 121 GS -0.4862 0.3432 1 121 PN 0.9817 0.3735 2 121 GS 0.1535 0.3343 2 121 PN 2.0668 0.5113 3 121 GS 0.0965 0.3337 3 121 PN 2.6101 0.6172 4 121 GS 0.0000 0.2857 4 121 PN 3.6586 0.7638 5 168 GS -1.5271 0.4305 5 168 PN 1.8355 0.4737 Direct Estimation rma.mv(Hedges ~ Measurement, Var, random =~ Measurement|Paper, data=co2data, struct="HCS") r and Different Correlation Structures • Different structures for different data • We do not always know which one is correct! Estimates of Variance, Covariance Multivariate Meta-Analysis Model (k = 68; method: REML) Variance Components: outer factor: Paper (nlvls = 18) inner factor: Measurement (nlvls = 2) tau^2.1 tau^2.2 rho estim 4.5098 3.5799 0.4751 sqrt 2.1236 1.8921 k.lvl 34 34 fixed no no no level GS PN Disadvantages to Multivariate Meta-Analysis 1. Difficult to estimate with few studies 2. Additional assumptions of covariance structure 3. Often little improvement over univariate meta-analysis 4. Publication bias exacerbated if data not missing at random Jackson et al. 2011 Satist. Med. Robust Variance Estimation • Essentially, bound weights within a group j to 1/mean varj and assume a value of r – Test sensitivity to choice of r – Correct DF for small sample sizes • Methods developed by Hedges, Tipton, and others • robumeta package in R robumeta & RVE library(robumeta) robu(Hedges ~ Measurement, data=co2data, studynum=Paper, var.eff.size=Var) RVE: Correlated Effects Model with SmallSample Corrections Model: Hedges ~ Measurement Number of studies = 18 Number of outcomes = 68 (min = 2 , mean = 3.78 , median = 4 , max = 10 ) Rho = 0.8 I2 = 85.59992 Tau.Sq = 2.561661 Struct="CS" only so far Often, Choice of r Matters Little > sensitivity(co2modRVE) Type Variable 1 Estimate intercept 2 - MeasurementPN 3 Std. Err. intercept 4 - MeasurementPN 5 Tau.Sq - rho=0 0.00454 1.03149 0.51173 0.61984 2.55334 rho=0.2 0.00457 1.03139 0.51179 0.61990 2.55542 rho=0.4 0.00459 1.03128 0.51185 0.61996 2.55750 rho=0.6 0.00462 1.03118 0.51192 0.62003 2.55958 rho=0.8 0.00464 1.03107 0.51198 0.62009 2.56166 rho=1 0.00467 1.03097 0.51204 0.62015 2.56374 Results May Differ… Multivariate Meta-Analysis Model Results: intrcpt MeasurementPN estimate -0.0503 1.0579 se 0.5221 0.5359 zval -0.0963 1.9742 pval 0.9233 0.0484 ci.lb -1.0735 0.0076 ci.ub 0.9730 2.1082 * Robust Variance Estimation Model Results: Estimate StdErr t-value Sig 1 intercept 2 MeasurementPN 0.00464 1.03107 df P(|t|>) 95% CI.L 95% CI.U 0.512 0.00907 16.7 0.620 1.66278 16.7 0.993 0.115 -1.077 -0.279 1.09 2.34 Other Sources of Unknown Correlations • Shared system types • Shared environmental events • Labs or investigators • Re-sampling experiments • Experiments repeated in a region • More… Why Model Correlation instead of Hierarchy? • Depends on question • Analytical difficulty • Leveraging correlation to aid with missing data
© Copyright 2025