HOMEWORK EXERCISES The forces of covalent bonds usually act over what range of interatomic 4.1 How is “material” different from “matter?” separations? 4.2 True or false? solids. True or false? A single water molecule is formed by All vansubstances der Waalsform bonding, 4.3 Interatomic forces are usually which type of force? while covalent bonding holds numerous water molecules together. 4.4 True or false? On a plot of the potential True or false? The dispersion force can cause a nonpolar molecule to behave energy of two atoms versus their separation distance, the lowest energy point on the curve is the separation distance like a dipolar molecule. attractive andpoints. repulsive forces TTY are equal./ Syksy 2014 FYS-1350 Nanofysiikka Explain why smaller molecules tend towhere have lower boiling 4.5 True or false? The radius of an ion is roughly equivalent to that of the uncharged Rank the following bonds from strongest to weakest and provide the bond atom. Explain your molecule; answer. the bond energy: the bond between hydrogen and oxygen in a water Laskuharjoitus 4 4.6 The forces of covalent bonds usually between sodium and chloride in the NaCl molecule; the bond between atoms act over what range of interatomic separations? in a metal; the van derTehtävä Waals bond between adjacent hydrogen atoms. 1 (Exercise 4.11).A 4.7 True or molecule In Back-of-the-Envelope 4.2, we determined thefalse? van der single Waals water attractive force is formed by van der Waals bonding, In Back-of-the-Envelope 4.2, we determined the van der Waals attractive force between a pair while covalent bonding holds numerous between a pair of hydrogen atoms. Of course, in practice we more often deal water molecules together. of hydrogen atoms. Of course, in practice we dealmolecule with devices and objects, and True or false? Thelead dispersion can more cause aoften nonpolar to behave with devices and objects, and van4.8 der Waals forces often to partsforce sticking van der between Waalslike often lead to parts together. The attractive energy between a a dipolar molecule. together. The attractive energy aforces spherical body of radius R and asticking flat 4.9 Explain why smaller molecules tend to have lower boiling spherical body of radius R and a flat surface, separated by a points. distance x (see Figure 4.24) is surface, separated by a distance x (see Figure 4.24) is given by given by 4.10 Rank the following bonds from strongest to weakest and provide the bond energy: the bond between hydrogen and oxygen in a water molecule; the bond HR sodium and chloride in the NaCl molecule; the bond between atoms E( x )sphere-surface =between − (4.7) 6x in a metal; the van der Waals bond between adjacent hydrogen atoms. 4.11 In Back-of-the-Envelope we determined the van der Waals attractive In this equation, H is the so-called 4.2, Hamaker constant. In the case of solidsforce separated by air, H between a pair of hydrogen atoms. Of course, in practice we more often deal ≈ 10−19 J. with devices and objects, and attractive van der Waals forces often lead toto parts a) Determine the equation for the force with respect x. sticking together. The attractive energy between a spherical body of radius R and afrom flat the surface, as b) Now determine the force of gravity pulling the sphere down, away surface, by a distance (see Figureis4.24) is given by a function of separated R. Assume that thex particle made of silicon, with a density of 2330 kg/m3. HR pulls it away from the surface if they are c) How large can the sphere before gravity x Ebe ( x )sphere-surface =− (4.7) 6x separated by 10 nm of air? By 1 nm? R A spherical body of radius, R, separated from a surface by a distance, x. (See xercise 4.11.) x R A spherical body of radius, R, separated from a surface by a distance, x. (See Homework Exercise 4.11.) FIGURE 4.24 Tehtävä 2 (Exercise 4.13). A given crystal structure (such as NaCl) can be represented as consisting of planes of atoms, as shown in Figure 4.25. A beam of x-rays can be reflected off the crystal, where some of the beam penetrates through the atoms of the upper layer and strikes the atoms in the lower plane. A pair of incident x-rays from an x-ray source is reflected from the crystal as shown and into an x-ray detector. a) How much farther does the beam reflected from the lower plane travel from the source to the detector than the one reflected from the upper plane? b) If the beams have wavelength, λ, under what conditions will the two reflected beams constructively interfere with each other (i.e., have maxima at the same points)? c) The relationship you derived in part (b) was first derived by W.L. Bragg (1890–1971). If we can experimentally measure the diffraction angle and we know the wavelength used, what feature of the crystal can we use this relationship to determine? d) X-rays with a wavelength of 140 pm are reflected from an NaCl crystal and are found Nanomaterials ◾ 119 to constructively interfere at an angle of incidence of 14.4°. Calculate d. D t ec et Xra ys ou rc e or q d Upper plane q Lower plane X-rays reflected by the top two planes of a crystal. The gray dots represent atoms in the crystal lattice. The planes are parallel. (See Homework Exercise 4.13.) FIGURE 4.25 Tehtävä 3. Palataan tehtäväänIn1.thisMuutetaan nyt Hamaker siten, että pallonInsijaan equation, Htilannetta is the so-called constant. the casepinnassa of solids on kiinni −19 kuutiomainen kappale, jonka sivun on L. Tämä kuutio (tilavuus L3) lepää lähellä separated by air, H ≈ 10pituus J. a. Determine thepintaa equationsiten, for theettä attractive forcejawith respect(pintaa to x. äärettömän laajuista tasomaista pinnan kuution lähinnä olevan b. Now determine the force of gravity pulling the sphere down, away from the joka on tahkon) välinen etäisyys toisistaan on x. Tässä tilanteessa van der Waals -voima, 3 surface,on as aFfunction of /R.(6 Assume the particle is made with per pintakuution ja pinnan välillä, π x ).that Huomaa, että tämäof silicon, on voima vdw = H 3. a density of 2330 kg/m alayksikkö. H on jälleen Hamaker-vakio. c. How large thekuvattu sphere bekuutio before gravity pulls it away from if kattoon. Voit nyt kuvitella, ettäcan yllä on hyönteinen, joka the onsurface tarttunut they are separated by 10 nm of air? By 1 nm? Kun hyönteinen on pieni, se pysyy katossa kiinni van der Waals –voiman ansiosta. Osoita 4.12 The spacing between atoms in a crystal is about 100 pm. What forms of elecskaalausrelaatioilla, että kun hyönteisen koko kasvaa, niin jossain vaiheessa väistämättä tromagnetic radiation have wavelengths short enough to fit between the atoms hyönteistä alaspäininvetävä gravitaatiovoima voittaa hyönteistä katossa pitävän van der Waals the crystal? –voiman, ja hyönteinen alas lattialle. skaalausrelaatioiden 4.13 A given humpsahtaa crystal structure (such as NaCl)(Muista can be represented as consisting ofidea: tässä tapauksessa kuinkaplanes voima riippuu kappaleen koosta.) of atoms, as shown in Figure 4.25. A beam of x-rays can be reflected off the crystal, where some of the beam penetrates through the atoms of Tehtävä 4. the upper layer and strikes the atoms in the lower plane. A pair of incident x-ray source is reflected from the crystal shown and into an että niitä Tarkastellaan kahtax-rays from tyhjiössäanolevaa vesimolekyyliä (katso kuvatasalla). Kuvitellaan, detector. voidaan kuvata x-ray yksinkertaistetusti siten, että niitä kumpaakin kuvaa vain niiden a. How much farther does the beam reflected from the lower plane travel from kohdalla. dipolimomentti, jonka keskipiste sijaitsee ko. vesimolekyylin massakeskipisteen the source to the detector than the one reflected from the upper plane? Tällöin näiden vesimolekyylien välinen potentiaalienergia on b. If the beams have wavelength, λ, under what conditions will the two reflected E = p1 p2 K / (4 π ε0 r3beams ), constructively interfere with each other (i.e., have maxima at the same points)? c. The relationship you derived in part (b) was first derived by W.L. Bragg jossa K = sin θ1 sin θ(1890–1971). – 2 experimentally cos θ1 cos θ2measure . Kulmat esitetty angle myösand alla olevassa 2 cos (φ1 –Ifφwe 2) can theon diffraction kuvassa kahden vesimolekyylin dipoleille p ja p . 1 2 we know the wavelength used, what feature of the crystal can we use this a) Missä asennossa toisiinsa nähden nämä kaksi vesimolekyyliä haluaisivat olla, jotta E relationship to determine? minimoituu? b) Jos nyt kyseessä olisikin 3 vesimolekyyliä (”1”, ”2”, ja ”3”), ja laskisit koko systeemin yhteisen potentiaalienergian (vesimolekyylien ”1” ja ”2” välisen potentiaalienergian, molekyylien ”2” ja ”3” välisen energian, ja vesien ”1” ja ”3” välisen potentiaalienergian, ja kuvaten näiden energioita yhdessä), niin mikä olisi noiden kolmen molekyylin keskinäinen orientaatio, jossa kokonaispotentiaalienergia minimoituu?
© Copyright 2024